【技术实现步骤摘要】
一种用于电缆监测的低启动电流取电电路
本技术属于高压电力电缆监测
,特别涉及一种用于高压电力电缆监测的低启动电流取电电路。
技术介绍
随着智能电网的进一步发展以及电力产业的要求,对输电电缆进行实时监测变得尤为重要,而监测设备需要持续稳定工作的电源,而电流互感器进行获取电能的方式比较其它(如太阳能板获取电能、激光功能、蓄电池功能等等)一些方式更加稳定持续可靠的工作,更加经济,且取电装置质量体积小,安装更加方便等,更加适合作为监测设备的供电电源。针对电流互感器取电电路的设计需要保证三点:一、应尽量降低电流互感器取电电路启动电流。二、当设备供电电压超过指定值时泄流电路要可靠动作。三、在宽电流范围内需要保持设备供电电压的稳定。但目前,电流互感器取电电路的设计还不足够完善,电流互感器取电电路的失效不仅仅是让监测设备无法工作,可能会导致电流互感器饱和而发热严重起火,甚至威胁电网的安全运行,所以对电流互感器取电电路的可靠性要求很高,需要比较完善的设计。
技术实现思路
本技术所要解决的技术问题:针对现有的电流互感器取电电路的设计还不足够完善,电流互感器取电电路的失效不仅仅是让监测设 ...
【技术保护点】
一种用于电缆监测的低启动电流取电电路,其特征是:该电流取电电路的一端接在电流互感器二次侧,另一端接在监测设备上,电流取电电路包括防雷保护电路、可控硅过压保护电路、整流桥和泄能电路、储能滤波电路、线性稳压电路以及滞回比较电路,所述防雷保护电路由双向瞬态抑制二极管D3构成,双向瞬态抑制二极管D3并联在电流互感器二次侧;所述可控硅过压保护电路由双向晶闸管Q1、稳压二极管D4、稳压二极管D6、电容C8、电阻R2及电容C6构成,双向晶闸管Q1的第一阳极A1和第二阳极A2连接在电流互感器二次侧;稳压二极管D4的阴极和稳压二极管D6的阴极对接,稳压二极管D4的阳极连接到双向晶闸管Q1的门 ...
【技术特征摘要】
1.一种用于电缆监测的低启动电流取电电路,其特征是:该电流取电电路的一端接在电流互感器二次侧,另一端接在监测设备上,电流取电电路包括防雷保护电路、可控硅过压保护电路、整流桥和泄能电路、储能滤波电路、线性稳压电路以及滞回比较电路,所述防雷保护电路由双向瞬态抑制二极管D3构成,双向瞬态抑制二极管D3并联在电流互感器二次侧;所述可控硅过压保护电路由双向晶闸管Q1、稳压二极管D4、稳压二极管D6、电容C8、电阻R2及电容C6构成,双向晶闸管Q1的第一阳极A1和第二阳极A2连接在电流互感器二次侧;稳压二极管D4的阴极和稳压二极管D6的阴极对接,稳压二极管D4的阳极连接到双向晶闸管Q1的门极上,稳压二极管D6的阳极连接到双向晶闸管Q1的第二阳极A2上,电容C8并联在双向晶闸管Q1的第二阳极A2和双向晶闸管Q1的门极之间,电阻R2和电容C6串联后并联在双向晶闸管Q1的第一阳极A1和第二阳极A2之间;所述整流桥和泄能电路由N-Mosfet管Q2、N-Mosfet管Q3、整流二极管D1及整流二极管D2构成,N-Mosfet管Q2的源极和N-Mosfet管Q3的源极连接在一起,构成直流负极GND接地端子;整流二极管D1的阴极和整流二极管D2的阴极连接在一起,构成直流正极供电电压VCC端子;N-Mosfet管Q2的漏极与整流二极管D1的阳极连接后与电流互感器二次侧的一端连接,N-Mosfet管Q3的漏极与整流二极管D2的阳极连接后与电流互感器二次侧的另一端连接,N-Mosfet管Q2的门极和N-Mosfet管Q3的门极连接在一起;所述储能滤波电路由电容C1、电容C2和电容C4构成,电容C1的正极和电容C2的正极连接到供电电压VCC端子上,电容C1的负极和电容C2的负极连接到GND接地端子上;电容C4连接在供电电压VCC端子和GND接地端子之间;所述线性稳压电路由RT9193低压差线性稳压器、电容C5及电容C3构成,RT9193低压差线性稳压器的输入引脚Vin和使能引脚En都连接到供电电压VCC端子上,RT9193低压差线性稳压器的接地引脚GND接GND接地端子上,RT9193低压差线性稳压器的输出引脚Vout接3.3V端子,RT9193低压差线性稳压器的旁路引脚BP经电容C5接GND接地端子;电容C3的正极接3.3V端子,电容C3...
【专利技术属性】
技术研发人员:庞丹,王振浩,王国友,赵东争,赵昌鹏,王朝斌,张喜林,
申请(专利权)人:国网吉林省电力有限公司长春供电公司,国家电网公司,东北电力大学,
类型:新型
国别省市:吉林,22
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。