基于统计岩体力学的岩体工程参数计算方法及系统技术方案

技术编号:17541806 阅读:55 留言:0更新日期:2018-03-24 19:03
本发明专利技术公开了一种基于统计岩体力学的岩体工程参数计算方法及系统,该计算方法以岩石单轴抗压强度、变形参数和岩体结构面网络、结构面摩擦角的现场测试数据为基础,计算岩体的各向异性弹性模量、泊松比、渗透椭球与渗透系数、抗压强度等工程设计参数,以及各类参数的各向异性比和弱化系数,并进行全空间方向岩体质量分级。采用本计算方法,通过适量的原位测试数据的对比校订,可为工程设计提供更为可靠的计算参数,不仅可以大幅减少大型原位试验工作量和投资,且可显著缩短工程前期勘察的周期,由此产生巨大的工程与经济效益。

Calculation method and system of rock mass engineering parameters based on statistics of rock mass mechanics

The invention discloses a method and system for calculating parameters of rock mass engineering rock mechanics based on the calculation method of uniaxial compressive strength, deformation field and parameters of rock discontinuity network structure, surface friction angle test data as a basis for calculating rock anisotropic elastic modulus, Poisson ratio, design parameters and permeability of ellipsoid the coefficient of permeability, compressive strength and other projects, and all kinds of parameters of the anisotropic ratio and softening coefficient, and the classification of rock mass in full space direction. Using this method, by comparing the amount of in situ test data revisions, for engineering design to provide a more reliable calculation parameter, not only can reduce the workload of large-scale in-situ tests and investment, and can significantly shorten the cycle of exploration project, resulting in huge engineering and economic benefits.

【技术实现步骤摘要】
基于统计岩体力学的岩体工程参数计算方法及系统
本专利技术涉及岩体工程领域,具体涉及一种基于统计岩体力学的岩体工程参数计算方法及系统。
技术介绍
目前世界各国的岩体工程设计大多采用岩体质量分级为基础,进行基于经验性规范的标准化设计。这种方法将千变万化的岩体质量分为5(或6)个级别,不仅十分粗略,而且不能反映岩体质量的各向异性特性。岩体工程设计的直接基础是岩体的工程参数,例如岩体质量指标RQD、变形模量、抗剪强度、渗透系数等参数。这些参数目前只能通过大型现场试验获得,或以粗略的岩体质量分级为基础,通过经验公式计算获得。显然现场试验,如大型载荷试验、剪切试验、钻孔岩性编录和水文地质试验,不仅笨重、耗资、耗时,且因试验点的代表性而成果分散性突出,可靠性较差,需要较多的样本点,由此导致耗资较大,而基于岩体质量分级方法大多通过经验公式计算岩体工程参数,不仅粗略,而且不能客观反映岩体的各向异性性质。同时,岩体质量分级方法不能获得岩体的渗透系数等参数,岩体工程参数取值方法严重地制约了工程设计的可靠性和工程运营的安全。以岩体力学理论为支撑,建立岩体工程参数的计算方法,是岩体工程建设的迫切需求。
技术实现思路
为解决上述问题,本专利技术提供了一种科学可靠、方便快捷、客观反映岩体工程性质各向异性特征的岩体工程参数计算方法及系统,为工程设计提供可靠的科学技术支撑。为实现上述目的,本专利技术采取的技术方案为:一种基于统计岩体力学的岩体工程参数计算方法,包括如下步骤:步骤一、以现场实测的岩体结构面网络数据为基础,通过以下公式计算岩体的结构参数:体积节理数λv和全空间方向的岩体质量指标RQD:式中,m为结构面组数,λ为某组结构面的法向密度(1/m),μ为该组结构面平均迹长的倒数(1/m),为该组结构面的平均半径(m);式中,λs为测线方向结构面交点密度(1/m);步骤二、以现场实测的岩体结构面网络数据、结构面摩擦角φj,岩石弹性模量E与泊松比ν的实测或经验数据为基础,通过以下公式计算岩体全空间方向弹性模量Em和泊松比ν13:式中:ni为第p组结构面的法线方向余弦,σ,t为某组结构面上的法向应力和剪应力,其他参数同前;并计算岩体弹性模量各向异性指数弱化系数其中Emmin、Emmax、为全空间方向中岩体模量的最小值、最大值和平均值,E为岩石的弹性模量;步骤三、以岩体结构面网络数据、结构面摩擦角,岩石I型裂纹断裂韧度KIc的实测数据为基础,通过以下公式计算一组结构面岩体全空间方向单轴抗压强度:式中:λ为该组结构面法向密度(1/m),V为研究对象体积(m3);当有m组结构面时,岩体单轴抗压强度取其中的最低强度;并计算岩体强度的各向异性指数弱化系数其中σmmin、σmmax、为全空间方向中岩体抗压强度的最小值、最大值和平均值,σc为岩石单轴抗压强度;步骤四、以岩体结构面网络数据为基础,计算岩体渗透椭球和主渗透系数:式中:为第p组结构面的体积密度(1/m3),为该组结构面的平均隙宽(mm),λi为与之交切的第i组结构面的法向密度(1/m),θ为第p组与第i组结构面法线夹角;同时,计算岩体渗透系数各向异性指数其中Kmin、Kmax为全空间方向中岩体渗透系数的最小值、最大值。本专利技术还提供了一种基于统计岩体力学的岩体工程参数计算系统,包括:数据采集模块,用于采集现场实测的岩体结构面网络数据、结构面摩擦角φj,岩石弹性模量E与泊松比ν以及岩石I型裂纹断裂韧度KIc的数据;体积节理数λv计算模块,用于以现场实测的岩体结构面网络数据为基础,通过以下公式计算岩体的体积节理数λv式中,m为结构面组数,λ为某组结构面的法向密度(1/m),μ为该组结构面平均迹长的倒数(1/m),为该组结构面的平均半径(m);全空间方向的岩体质量指标RQD计算模块,用于以现场实测的岩体结构面网络数据为基础,通过以下公式计算全空间方向的岩体质量指标RQD:式中,λs为测线方向结构面交点密度(1/m);岩体全空间方向弹性模量Em和泊松比ν13计算模块,用于以现场实测的岩体结构面网络数据、结构面摩擦角φj,岩石弹性模量E与泊松比ν的实测或经验数据为基础,通过以下公式计算岩体全空间方向弹性模量Em和泊松比ν13:式中:ni为第p组结构面的法线方向余弦,σ,t为某组结构面上的法向应力和剪应力,其他参数同前;岩体弹性模量各向异性指数和弱化系数计算模块,用于通过以下公式计算岩体弹性模量各向异性指数弱化系数其中Emmin、Emmax、为全空间方向中岩体模量的最小值、最大值和平均值,E为岩石的弹性模量;结构面岩体全空间方向单轴抗压强度计算模块,用于以岩体结构面网络数据、结构面摩擦角,岩石I型裂纹断裂韧度KIc的实测数据为基础,通过以下公式计算一组结构面岩体全空间方向单轴抗压强度:式中:λ为该组结构面法向密度(1/m),V为研究对象体积(m3);当有m组结构面时,岩体单轴抗压强度取其中的最低强度;岩体强度的各向异性指数和弱化系数计算模块,用于计算岩体强度的各向异性指数弱化系数其中σmmin、σmmax、为全空间方向中岩体抗压强度的最小值、最大值和平均值,σc为岩石单轴抗压强度;岩体渗透椭球和主渗透系数计算模块,用于以岩体结构面网络数据为基础,通过以下公式计算岩体渗透椭球和主渗透系数:式中:为第p组结构面的体积密度(1/m3),为该组结构面的平均隙宽(mm),λi为与之交切的第i组结构面的法向密度(1/m),θ为第p组与第i组结构面法线夹角;岩体渗透系数各向异性指数计算模块,用于计算岩体渗透系数各向异性指数Kmin、Kmax为全空间方向中岩体渗透系数的最小值、最大值。本专利技术提供了一种科学可靠、方便快捷、客观反映岩体工程性质各向异性特征的岩体工程参数计算方法,至少具有以下有益效果:①把岩体工程参数计算建立在统计岩体力学严格的理论基础上,保证了参数计算的科学性与可靠性;②客观体现了岩体结构效应、岩石与结构面力学性质、环境应力、地下水等各类地质因素对岩体工程性质的影响,使计算结果更接近实际情况;③充分体现岩体结构及其力学效应的方向性特性,客观反映了岩体工程性质的各向异性性质;④可同时获得岩体的全空间方向RQD、弹性模量、泊松比、抗压(剪)强度、渗透椭球和主渗透系数等工程参数,并采用赤平投影和任意切面图方式表述;⑤以计算为主,配合适量现场测试校订的方法,可大幅度减少笨重、耗时、耗资的现场试验,工程与经济效益显著。附图说明图1为本专利技术实施例一种基于统计岩体力学的岩体工程参数计算方法的流程图。具体实施方式为了使本专利技术的目的及优点更加清楚明白,以下结合实施例对本专利技术进行进一步详细说明。应当理解,此处所描述的具体实例仅仅用以解释本专利技术,并不用于限定本专利技术。如图1所示,本专利技术实例提供了一种基于统计岩体力学的岩体工程参数计算方法,包括如下步骤:步骤一、以现场实测的岩体结构面网络数据为基础,通过以下公式计算岩体的结构参数:体积节理数λv和全空间方向的岩体质量指标RQD:式中,m为结构面组数,λ为某组结构面的法向密度(1/m),μ为该组结构面平均迹长的倒数(1/m),为该组结构面的平均半径(m);式中,λs为测线方向结构面交点密度(1/m);步骤二、以现场实测的岩体结构面网络数据、结构面摩擦角φj,岩石弹性模量E与泊松比ν的实本文档来自技高网...
基于统计岩体力学的岩体工程参数计算方法及系统

【技术保护点】
一种基于统计岩体力学的岩体工程参数计算方法,其特征在于,包括如下步骤:步骤一、以现场实测的岩体结构面网络数据为基础,通过以下公式计算岩体的结构参数:体积节理数λv和全空间方向的岩体质量指标RQD:

【技术特征摘要】
1.一种基于统计岩体力学的岩体工程参数计算方法,其特征在于,包括如下步骤:步骤一、以现场实测的岩体结构面网络数据为基础,通过以下公式计算岩体的结构参数:体积节理数λv和全空间方向的岩体质量指标RQD:式中,m为结构面组数,λ为某组结构面的法向密度(1/m),μ为该组结构面平均迹长的倒数(1/m),为该组结构面的平均半径(m);式中,λs为测线方向结构面交点密度(1/m);步骤二、以现场实测的岩体结构面网络数据、结构面摩擦角φj,岩石弹性模量E与泊松比ν的实测或经验数据为基础,通过以下公式计算岩体全空间方向弹性模量Em和泊松比ν13:式中:ni为第p组结构面的法线方向余弦,σ,t为某组结构面上的法向应力和剪应力,其他参数同前;并计算岩体弹性模量各向异性指数弱化系数其中Emmin、Emmax、为全空间方向中岩体模量的最小值、最大值和平均值,E为岩石的弹性模量;步骤三、以岩体结构面网络数据、结构面摩擦角,岩石I型裂纹断裂韧度KIc的实测数据为基础,通过以下公式计算一组结构面岩体全空间方向单轴抗压强度:式中:λ为该组结构面法向密度(1/m),V为研究对象体积(m3);当有m组结构面时,岩体单轴抗压强度取其中的最低强度;并计算岩体强度的各向异性指数弱化系数其中σmmin、σmmax、为全空间方向中岩体抗压强度的最小值、最大值和平均值,σc为岩石单轴抗压强度;步骤四、以岩体结构面网络数据为基础,计算岩体渗透椭球和主渗透系数K:式中:r为第p组结构面被其他组结构面交切的最大长度(m),为该组结构面的平均半径(m),为该组结构面的体积密度(1/m3),为该组结构面的平均隙宽(mm),λi为与之交切的第i组结构面的法向密度(1/m),θ为第p组与第i组结构面法线夹角,ν=0.01084为水的运动粘滞系数(cm2/s),其他符号意义同前;同时,计算岩体渗透系数各向异性指数其中Kmin、Kmax全空间方向中岩体渗透系数的最小值、最大值。2.一种基于统计岩体力学的岩体工程参数计算系统,其特征在于,包括:数据采集模块,用于采集现场实测的岩体结构面网络数据、结构面摩擦角φj,岩石弹性模量E与泊松比ν以及岩石I...

【专利技术属性】
技术研发人员:伍法权伍劼包含叶晓彤郗鹏程
申请(专利权)人:中科吉奥北京地质工程咨询有限责任公司
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1