基于机器学习的螺杆式物料配料机控制方法技术

技术编号:17293433 阅读:35 留言:0更新日期:2018-02-18 04:56
本发明专利技术公开了基于机器学习的螺杆式物料配料机控制方法,先在控制器中建立动态递归Elman神经网络,将下料仓料位、空中落差、落料率、物料密度及螺旋输送器的螺旋叶片直径、螺距和螺杆最大转速7个输入量映射为螺杆式物料配料机下料过程中的物料空中量,按梯度下降法离线训练网络后,在线控制下料过程中处理模块根据神经网络输出的空中量预测值通过输出模块对螺旋输送器进行提前关闭控制。本发明专利技术采用非线性网络对下料过程进行建模,训练后的网络能对不同落料状态下的空中量进行准确预测,从而可直接精确下料且适用于小批量生产,又由于螺杆可保持高运转速度而提升了下料效率。

【技术实现步骤摘要】
基于机器学习的螺杆式物料配料机控制方法
本专利技术涉及定量下料领域,具体涉及一种基于机器学习的螺杆式物料配料机控制方法。
技术介绍
在工农业制造和商品包装中,有大量的粉粒物料,如煤粉等炼铁原料,聚丙烯、聚苯乙烯、聚氯乙烯、轻甲基纤维素、聚丙烯睛、环氧树脂粉末涂料等化工原料,石英砂、水泥等建材原料,洗衣粉等日用化工产品,小米、大豆等谷物豆类农产品,或粉、渣、粒状加工食品,饲料、化肥、农药等农业生产物料,以及粉粒状的保健品、中西药剂、调味品等均需要自动定量包装或者配料制造。目前我国有很多企业仍然采用手工定量配料或者包装,一方面劳动强度大,速率慢,经济效益差;另一方面,食品、药品等手工定量往往不能满足卫生要求,有毒有害的物料,人工参与定量容易对人体造成伤害。因此对生产企业来说,急需提供价廉的具有较高速率和准确度的多组份自动定量下料设备或者装置,满足大量的物料定量包装或者配料制造要求。目前国内外粉粒物料自动定量下料配料装置常用方法有两种,容积式和称重式。容积式定量依据物料容积进行计量充填或者投料,定量投料迅速,但定量物料质量受到物料密度变化而变化。为提高下料精度,出现了多种调节方法,如申请号为201320001933.3的中国专利,对螺杆采用变频调速,在接近目标值逐渐减慢喂料速度,减少空中落差值;申请号为201310234280.8的中国专利,在纯碱包装机三速变频给料工艺中采用大小螺杆分多阶段下料;申请号为200920248298.2的中国专利考虑到快速下料时难以控制定量而通过先快后慢的方法来减小供料落差的影响;这些非称重式方案的下料终值只能接近期望值,准确度不高。称重式定量依据物料质量进行计量充填或者投料,需要在下料过程中不断称重,根据称重结果反馈控制下料量,由于称重受到下料冲击和空中滞后物料影响较大,组份下料速度和精度都面临很多困难。为了补偿空中物料对计量精度的干扰,很多方案采用提前关闭阀门的技术,如申请号为201410230888.8的中国专利将配料称重过程划分为三个阶段,并在最后一个阶段采用迭代学习控制方式来计算关闭提前控制量。相比迭代学习控制中的间接式的线性迭代预测,如果能通过对影响下料过程中物料空中落料量各因素的分析来构造一种非线性映射,则可以更直观的描述下料过程并基于这种映射对物料空中量进行准确、直接的预测。
技术实现思路
单纯的螺杆式送料器属于容积式定量范畴,容积式定量充填基于容积来计量充填物料的数量,其结构简单,成本低,但定量充填速度稳定性及精度依赖于物料视比重的稳定性,受物料松散程度、颗粒均匀程度、吸湿性等物理化学性质的影响较大。由于普通容积式本质上是换算式的,无法像称重式一样掌握下料的确切质量,后来虽然出现了结合称重的方案,但由于没有空中量预测而只能依靠下料最后阶段极低的送料速度来保证精度。为此,本专利技术将动态称重检测与螺杆送料器相结合,以提高下料速度。但在称重式下料中,需要对空中量及其冲击进行估算。而下料过程中的空中落料量即空中量,其影响因素很多,如输送装置关闭速度、下料口到秤斗料面间落差大小、物料下落形态流率等,因而提前关闭下料输送装置的时间难以通过离线实验一次性确定。根据对下料过程深入的测试与分析,发现螺杆式物料配料机空中量最主要的影响因素包括:下料仓料位、空中落差、落料率、物料密度及螺旋输送器的螺旋叶片直径、螺距和螺杆最大转速。空中量是这些物理量的复杂非线性映射,为了对空中量进行预测并进而通过提前关闭螺旋输送器来进行精确的下料,需要辨识并表达该映射关系。基于线性系统理论对系统进行辩识并修正参数的方法能较好地应用于线性系统,但无法适用于复杂的非线性系统。人工神经网络是由大量处理单元广泛互连而成的网络,具有大规模并行模拟处理能力和很强的自适应、自组织、自学习能力,在系统建模、辨识与控制中受到普遍重视,其所具有的非线性变换特性为系统辨识尤其是非线性系统的辨识提供了有效的方法。目前,非线性系统辩识中应用最多的是多层前向网络,多层前向网络具有逼近任意连续非线性函数的能力,但这种网络结构一般是静态的,从物料下落过程分析可以看出,由于下料仓料位和空中落差都是逐渐变化的,因此,连续两个采样周期中空中量之间也有着紧密的联系。为此,本专利技术采用动态递归神经网络来对系统进行建模。与静态前馈型神经网络不同,动态递归网络通过存储内部状态,使其具备映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。本专利技术基于动态递归Elman神经网络,对空中量与下料仓料位c、空中落差h、落料率d、物料密度ρ及螺旋输送器的螺旋叶片直径D、螺距S和螺杆最大转速vR之间的映射关系进行辨识,又在下料过程中对下料仓中的物料分布进行检测与动态调整,使得经训练的神经网络能对不同状态下的空中量进行直接预测,从而实现高精度下料。本专利技术的技术解决方案是,提供一种基于机器学习的螺杆式物料配料机控制方法,包括以下步骤:S1、建立神经网络模块:所述神经网络模块采用动态递归Elman神经网络,其输入层分别从处理模块接收下料仓料位、空中落差、落料率、物料密度及螺旋输送器的螺旋叶片直径、螺距和螺杆最大转速7个输入量,输出层的输出量分别通过第一连接阵和第二连接阵传输至迭代学习模块和处理模块;S2、获取训练样本:用螺杆式物料配料机重复下料,每次下料开始后,当物料从下料仓底部螺旋输送器到计量斗之间形成连续的物料流时,再持续下料一段时间,在关闭螺旋输送器时实时读取称重模块初始重量读数W并由处理模块获取输入量的值,等待物料下落完毕后读取称重模块重量读数WD,则在关闭螺旋输送器时刻的状态下的空中量为A=WD-W,以A作为样本输出量的空中量实际值;S3、离线训练神经网络:基于所获取的训练样本,迭代学习模块根据处理模块和神经网络分别通过第一连接阵输入的物料空中量实际值和网络输出值,采用梯度下降法迭代调整神经网络的连接权值;S4、在线下料控制:信号采集模块分别通过下料仓中仓位传感器、计量斗中斗位传感器和承载计量斗的称重模块来实时采集下料仓料位、计量斗料位、下落物料重量的传感信号并传输给处理模块进行数据处理与分析,得到下料仓料位、空中落差、落料率;利用训练好的神经网络对空中量进行预测得到预测值yA并传送给处理模块,由处理模块处理分析后通过输出模块对下料仓底部开口处的螺旋输送器的关闭时刻进行控制。作为优选,所述在线下料控制过程中,假设当前组份的一次下料量为Ws,开始下料时,控制器通过读取称重模块的传感值,获得计量斗的初始重量为G0;之后,控制器不断读取称重模块的传感值,当该值达到(G0+Ws-yA)时,关闭螺旋输送器。作为优选,所述获取训练样本过程中,使训练样本覆盖足够多的下料状态,每次关闭螺旋输送器时刻可以设定为从称重模块初始重量读数为某个确定值时刻之后的随机值。作为优选,所述在线下料控制过程中,除了空中量预测值,还要对当前累积下料误差进行补偿,即当检测到计量斗重量达到(G0+Ws-yA-E)时,关闭螺旋输送器,其中E为本组份当前累积下料误差。作为优选,所述输出模块还连接到计量斗底部开口处的落料阀,并根据处理模块的指令控制落料阀的启闭;所述输出模块还连接到下料仓中仓位传感器的可旋转底座,并根据处理模块的指令控制该底座的运转;所述输出模块还连本文档来自技高网
...
基于机器学习的螺杆式物料配料机控制方法

【技术保护点】
基于机器学习的螺杆式物料配料机控制方法,其包括以下步骤:S1、建立神经网络模块:所述神经网络模块采用动态递归Elman神经网络,其输入层分别从处理模块接收下料仓料位、空中落差、落料率、物料密度及螺旋输送器的螺旋叶片直径、螺距和螺杆最大转速7个输入量,输出层的输出量分别通过第一连接阵和第二连接阵传输至迭代学习模块和处理模块;S2、获取训练样本:用螺杆式物料配料机重复下料,每次下料开始后,当物料从下料仓底部螺旋输送器到计量斗之间形成连续的物料流时,再持续下料一段时间,在关闭螺旋输送器时实时读取称重模块初始重量读数W并由处理模块获取输入量的值,等待物料下落完毕后读取称重模块重量读数WD,则在关闭螺旋输送器时刻的状态下的空中量为A=WD‑W,以A作为样本输出量的空中量实际值;S3、离线训练神经网络:基于所获取的训练样本,迭代学习模块根据处理模块和神经网络分别通过第一连接阵输入的物料空中量实际值和网络输出值,采用梯度下降法迭代调整神经网络的连接权值;S4、在线下料控制:信号采集模块分别通过下料仓中仓位传感器、计量斗中斗位传感器和承载计量斗的称重模块来实时采集下料仓料位、计量斗料位、下落物料重量的传感信号并传输给处理模块进行数据处理与分析,得到下料仓料位、空中落差、落料率;利用训练好的神经网络对空中量进行预测得到预测值yA并传送给处理模块,由处理模块处理分析后通过输出模块对下料仓底部开口处的螺旋输送器的关闭时刻进行控制。...

【技术特征摘要】
1.基于机器学习的螺杆式物料配料机控制方法,其包括以下步骤:S1、建立神经网络模块:所述神经网络模块采用动态递归Elman神经网络,其输入层分别从处理模块接收下料仓料位、空中落差、落料率、物料密度及螺旋输送器的螺旋叶片直径、螺距和螺杆最大转速7个输入量,输出层的输出量分别通过第一连接阵和第二连接阵传输至迭代学习模块和处理模块;S2、获取训练样本:用螺杆式物料配料机重复下料,每次下料开始后,当物料从下料仓底部螺旋输送器到计量斗之间形成连续的物料流时,再持续下料一段时间,在关闭螺旋输送器时实时读取称重模块初始重量读数W并由处理模块获取输入量的值,等待物料下落完毕后读取称重模块重量读数WD,则在关闭螺旋输送器时刻的状态下的空中量为A=WD-W,以A作为样本输出量的空中量实际值;S3、离线训练神经网络:基于所获取的训练样本,迭代学习模块根据处理模块和神经网络分别通过第一连接阵输入的物料空中量实际值和网络输出值,采用梯度下降法迭代调整神经网络的连接权值;S4、在线下料控制:信号采集模块分别通过下料仓中仓位传感器、计量斗中斗位传感器和承载计量斗的称重模块来实时采集下料仓料位、计量斗料位、下落物料重量的传感信号并传输给处理模块进行数据处理与分析,得到下料仓料位、空中落差、落料率;利用训练好的神经网络对空中量进行预测得到预测值yA并传送给处理模块,由处理模块处理分析后通过输出模块对下料仓底部开口处的螺旋输送器的关闭时刻进行控制。2.根据权利要求1所述的基于机器学习的螺杆式物料配料机控制方法,其特征在于:所述在线下料控制过程中,假设当前组份的一次下料量为Ws,开始下料时,控制器通过读取称重模块的传感值,获得计量斗的初始重量为G0;之后,控制器不断读取称重模块的传感值,当该值达到(G0+Ws-yA)时,关闭螺旋输送器。3.根据权利要求1所述的基于机器学习的螺杆式物料配料机控制方法,其特征在于:所述获取训练样本过程中,使训练样本覆盖足够多的下料状态,每次关闭螺旋输送器时刻可以设定为从称重模块初始重量读数为某个确定值时刻之后的随机值。4.根据权利要求1所述的基于机器学习的螺杆式物料配料机控制方法,其特征在于:所述在线下料控制过程中,除了空中量预测值,还要对当前累积下料误差进行补偿,即当检测到计量斗重量达到(G0+Ws-yA-E)时,关闭螺旋输送器,其中E为本组份当前累积下料误差。5.根据权利要求1所述的基于机器学习的螺杆式物料配料机控制方法,其特征在于:所述输出模块还连接到计量斗底部开口处的落料阀,并根据处理模块的指令控制落料阀的启闭;所述输出模块还连接到下料仓中仓位传感器的可旋转底座,并根据处理模块的指令控制该底座的运转;所述输出模块还连接到安装在机架靠近下料仓侧壁处的振动杆,并根据处理模块的指令控制振动杆的起停和运转...

【专利技术属性】
技术研发人员:邹细勇朱力穆成银
申请(专利权)人:中国计量大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1