一种基于QUATRE架构的人工智能全局优化方法技术

技术编号:16874712 阅读:97 留言:0更新日期:2017-12-23 12:25
本发明专利技术公开了一种基于QUATRE架构的人工智能全局优化方法,包括:S1、建立拟仿射变换进化架构:

A global optimization method for artificial intelligence based on QUATRE architecture

The invention discloses a global optimization method for artificial intelligence based on QUATRE architecture, including: S1 and the establishment of quasi affine transformation evolution architecture:

【技术实现步骤摘要】
一种基于QUATRE架构的人工智能全局优化方法
本专利技术属于人工智能领域,尤其涉及一种基于QUATRE架构的人工智能全局优化方法。
技术介绍
计算智能作为人工智能的一个分支,起源于20世纪中叶,其主要思想是通过计算机进行计算的方式与方法来研究复杂数据、观察实验进程,以及解决现实中传统数学公式及模型无法解决的复杂问题。模糊逻辑、人工神经网络、模因计算、进化计算、量子计算等均属于该领域。其中在进化计算领域,主要有以下几个分支:遗传方法、学习分类系统、进化编程、进化策略、群体智能。其中,进化计算领域下的群体智能分支中的各种方法通过模拟自然启发的生物种群进化方式来实现复杂问题的求解,并且由于该分支中的大多数方法简单易用、功能强大,从而被研究人员应用在大量的工程及实际应用中。另外,群体智能分支下非常著名的方法如差分进化、粒子集群优化方法等,其发展趋势可以归纳为以下几个方面:(1)构建新的粒子间的拓扑关系,通过更好的拓扑关系架构达到更好的结果,其拓扑关系大致有以下几类:(A)静态拓扑结构、(B)动态拓扑结构、(C)自适应种群拓扑结构和(D)集合种群拓扑结构;(2)提供自适应的参数调节方式,即减本文档来自技高网...
一种基于QUATRE架构的人工智能全局优化方法

【技术保护点】
一种基于QUATRE架构的人工智能全局优化方法,其特征在于,所述方法包括如下步骤:S1、建立拟仿射变换进化架构,所述拟仿射变换进化架构的变换形式为:

【技术特征摘要】
1.一种基于QUATRE架构的人工智能全局优化方法,其特征在于,所述方法包括如下步骤:S1、建立拟仿射变换进化架构,所述拟仿射变换进化架构的变换形式为:其中X为粒子种群,M为布尔型进化矩阵,为对M取反的关联进化矩阵,B为变异矩阵,表示矩阵之间元素的按位相乘;S2、设置拟仿射变换进化架构的评价函数f(X)、全局最优值f*、迭代阈值Δf、调用评价函数的最大次数maxnfe以及进行迭代的条件,并对进化架构进行初始化,所述初始化包括初始化粒子种群X为X=XG=[X1,X2,……,Xps]TG,G=1,ps为粒子种群X中的粒子数,初始化调用评价函数的次数nfe=ps,由初始进化矩阵Minit得到布尔型进化矩阵M以及关联进化矩阵通过计算评价函数f(XG)的最优值f(Xgbest,G)得到G次迭代中粒子种群XG的当前最优粒子Xgbest,G;S3、判断是否满足进行迭代的条件,若满足进行迭代的条件,则继续执行以下步骤,若不满足进行迭代的条件则停止;S4、计算变异矩阵B,由变异矩阵B、布尔型进化矩阵M和关联进化矩阵根据拟仿射变换进化架构得到粒子种群XG的下一代粒子种群XG+1;S5、更新调用评价函数的次数nfe=nfe+ps,并更新下一代粒子种群XG+1,其中更新下一代粒子种群XG+1包括分别计算粒子种群XG和下一代粒子种群XG+1中每个粒子Xi,G和Xi,G+1的评价函数值f(Xi,G)和f(Xi,G+1),并选择评价函数值较优的粒子为下一代粒子种群XG+1中对应的粒子,其中下标i表示粒子种群X中的第i个粒子,i∈[1,ps];S6、由初始进化矩阵Minit得到布尔型进化矩阵M以及关联进化矩阵通过计算评价函数f(XG+1)的最优值f(Xgbest,G+1)得到G+1次迭代中粒子种群XG+1的当前最优粒子Xgbest,G+1,并令G=G+1然后回到步骤S3进行判断。2.根据权利要求1所述的一种基于QUATRE架构的人工智能全局优化方法,其特征在于,所述评价函数f(X)为根据人工智能具体应用所建立的目标函数,且所述粒子种群X以行向量的形式输入评价函数f(X)进行计算,进而得到粒子种群XG中每个粒子Xi,G的评价函数值f(Xi,G)。3.根据权利要求1所述的一种基于QUATRE架构的人工智能全局优化方法,其特征在于,进行迭代的条件为:(1)调用评价函数的次数nfe小于调用评价函数的最大次数maxnfe;或者(2)当前粒子种群的评价函数的最优值与全局最优值f*的差的绝对值小于迭代阈值Δf;或者(3)同时满足上述条件(1)和(2)。4.根据权利要求1所述的一种基于QUATRE架构的人工智能全局优化方法,其特征在于,初始进化矩阵Minit由D维单位下三角矩阵顺序堆叠而成,其中D为第G代粒子种群XG中每个粒子...

【专利技术属性】
技术研发人员:孟振宇潘正祥
申请(专利权)人:哈尔滨工业大学深圳研究生院
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1