光学成像系统技术方案

技术编号:16778169 阅读:31 留言:0更新日期:2017-12-12 23:00
本发明专利技术公开一种光学成像系统,由物侧至像侧依次包括第一透镜、第二透镜、第三透镜以及第四透镜。第一透镜具有正屈折力,其物侧面可为凸面。第二透镜至第三透镜具有屈折力,前述各透镜的两表面可皆为非球面。第四透镜可具有负屈折力,其像侧面可为凹面,其两表面皆为非球面,其中第四透镜的至少一表面具有反曲点。光学成像系统中具屈折力的透镜为第一透镜至第四透镜。当满足特定条件时,可具备更大的收光以及更佳的光路调节能力,以提升成像质量。

Optical imaging system

An optical imaging system consists of a first lens, a second lens, a third lens, and a fourth lens from the object side to the image side. The first lens has a positive bending force, and the side of the object can be a convex surface. The second lens to third lens has a flexion force, and the two surface of the preceding lenses can be aspherical. The fourth lens with negative refracting power, the image side is concave, the two surfaces are non spherical, wherein at least one surface of the fourth lens has a point of inflection. In the optical imaging system, the lens with flexion force is the first lens to fourth lens. When specific conditions are met, greater light harvesting and better optical path adjustment are available to improve imaging quality.

【技术实现步骤摘要】
光学成像系统
本专利技术涉及一种光学成像系统,且特别涉及一种应用于电子产品上的小型化光学成像系统。
技术介绍
近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光组件不外乎是感光耦合组件(ChargeCoupledDevice;CCD)或互补金属氧化物半导体传感器(ComplementaryMetal-OxideSemiconductorSensor;CMOSSensor)两种,且随着半导体工艺技术的精进,使得感光组件的像素尺寸缩小,光学系统逐渐往高像素领域发展,因此对成像质量的要求也日益增加。传统搭载于便携设备上的光学系统,多采用二片或三片式透镜结构为主,然而由于便携设备不断朝提升像素并且终端消费者对大光圈的需求例如微光与夜拍功能或是对广视角的需求例如前置镜头的自拍功能。惟设计大光圈的光学系统常面临产生更多像差致使边缘成像质量随的劣化以及制造难易度的处境,而设计广视角的光学系统则会面临成像的畸变率(distortion)提高,现有的光学成像系统已无法满足更高阶的摄影要求。因此,如何有效增加光学成像系统的进光量与增加光学成像系统的视角,除进一步提高成像的总像素与质量外同时能兼顾微型化光学成像系统的衡平设计,便成为一个相当重要的议题。
技术实现思路
本专利技术实施例提供一种光学成像系统,能够利用四个透镜的屈光力、凸面与凹面的组合(本专利技术所述凸面或凹面原则上是指各透镜的物侧面或像侧面于光轴上的几何形状描述),进而有效提高光学成像系统的进光量与增加光学成像系统的视角,同时提高成像的总像素与质量,以应用于小型的电子产品上。本专利技术实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:与长度或高度有关的透镜参数光学成像系统的成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统的第一透镜物侧面至第四透镜像侧面间的距离以InTL表示;光学成像系统的第四透镜像侧面至成像面间的距离以InB表示;InTL+InB=HOS;光学成像系统的固定光阑(光圈)至成像面间的距离以InS表示;光学成像系统的第一透镜与第二透镜间的距离以IN12表示(例示);光学成像系统的第一透镜于光轴上的厚度以TP1表示(例示)。与材料有关的透镜参数光学成像系统的第一透镜的色散系数以NA1表示(例示);第一透镜的折射率以Nd1表示(例示)。与视角有关的透镜参数视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。与出入瞳有关的透镜参数光学成像系统的入射光瞳直径以HEP表示;单一透镜的任一表面的最大有效半径是指系统最大视角入射光通过入射光瞳最边缘的光线于所述透镜表面交会点(EffectiveHalfDiameter;EHD),所述交会点与光轴之间的垂直高度。例如第一透镜物侧面的最大有效半径以EHD11表示,第一透镜像侧面的最大有效半径以EHD12表示。第二透镜物侧面的最大有效半径以EHD21表示,第二透镜像侧面的最大有效半径以EHD22表示。光学成像系统中其余透镜的任一表面的最大有效半径表示方式以此类推。与透镜面形弧长及表面轮廓有关的参数单一透镜的任一表面的最大有效半径的轮廓曲线长度,是指所述透镜的表面与所属光学成像系统的光轴的交点为起始点,自所述起始点沿着所述透镜的表面轮廓直至其最大有效半径的终点为止,前述两点间的曲线弧长为最大有效半径的轮廓曲线长度,并以ARS表示。例如第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示。光学成像系统中其余透镜的任一表面的最大有效半径的轮廓曲线长度表示方式以此类推。单一透镜的任一表面的1/2入射光瞳直径(HEP)的轮廓曲线长度,是指所述透镜的表面与所属光学成像系统的光轴的交点为起始点,自所述起始点沿着所述透镜的表面轮廓直至所述表面上距离光轴1/2入射光瞳直径的垂直高度的坐标点为止,前述两点间的曲线弧长为1/2入射光瞳直径(HEP)的轮廓曲线长度,并以ARE表示。例如第一透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE11表示,第一透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE12表示。第二透镜物侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE21表示,第二透镜像侧面的1/2入射光瞳直径(HEP)的轮廓曲线长度以ARE22表示。光学成像系统中其余透镜的任一表面的1/2入射光瞳直径(HEP)的轮廓曲线长度表示方式以此类推。与透镜面形深度有关的参数第四透镜物侧面于光轴上的交点至第四透镜物侧面的最大有效半径位置于光轴的水平位移距离以InRS41表示(例示);第四透镜像侧面于光轴上的交点至第四透镜像侧面的最大有效半径位置于光轴的水平位移距离以InRS42表示(例示)。与透镜面型有关的参数临界点C是指特定透镜表面上,除与光轴的交点外,一与光轴相垂直的切面相切的点。承上,例如第三透镜物侧面的临界点C31与光轴的垂直距离为HVT31(例示),第三透镜像侧面的临界点C32与光轴的垂直距离为HVT32(例示),第四透镜物侧面的临界点C41与光轴的垂直距离为HVT41(例示),第四透镜像侧面的临界点C42与光轴的垂直距离为HVT42(例示)。其他透镜的物侧面或像侧面上的临界点及其与光轴的垂直距离的表示方式比照前述。第四透镜物侧面上最接近光轴的反曲点为IF411,所述点沉陷量SGI411(例示),SGI411也就是第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF411所述点与光轴间的垂直距离为HIF411(例示)。第四透镜像侧面上最接近光轴的反曲点为IF421,所述点沉陷量SGI421(例示),SGI411也就是第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF421所述点与光轴间的垂直距离为HIF421(例示)。第四透镜物侧面上第二接近光轴的反曲点为IF412,所述点沉陷量SGI412(例示),SGI412也就是第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF412所述点与光轴间的垂直距离为HIF412(例示)。第四透镜像侧面上第二接近光轴的反曲点为IF422,所述点沉陷量SGI422(例示),SGI422也就是第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF422所述点与光轴间的垂直距离为HIF422(例示)。第四透镜物侧面上第三接近光轴的反曲点为IF413,所述点沉陷量SGI413(例示),SGI413也就是第四透镜物侧面于光轴上的交点至第四透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF413所述点与光轴间的垂直距离为HIF413(例示)。第四透镜像侧面上第三接近光轴的反曲点为IF423,所述点沉陷量SGI423(例示),SGI423也就是第四透镜像侧面于光轴上的交点至第四透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF4本文档来自技高网...
光学成像系统

【技术保护点】
一种光学成像系统,其特征在于,由物侧至像侧依次包括:一第一透镜,具有屈折力;一第二透镜,具有屈折力;一第三透镜,具有屈折力;一第四透镜,具有屈折力;以及一成像面,其中所述光学成像系统具有屈折力的透镜为四枚,所述第一透镜至所述第四透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第四透镜的焦距分别为f1、f2、f3、f4,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第四透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。

【技术特征摘要】
2016.06.02 TW 1051174571.一种光学成像系统,其特征在于,由物侧至像侧依次包括:一第一透镜,具有屈折力;一第二透镜,具有屈折力;一第三透镜,具有屈折力;一第四透镜,具有屈折力;以及一成像面,其中所述光学成像系统具有屈折力的透镜为四枚,所述第一透镜至所述第四透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第四透镜的焦距分别为f1、f2、f3、f4,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第四透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。2.如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统于成像时的TV畸变为TDT,其中所述光学成像系统于所述成像面上垂直于光轴具有一最大成像高度HOI,所述光学成像系统的正向子午面光扇的最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PLTA表示,所述光学成像系统的正向子午面光扇的最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以PSTA表示,所述光学成像系统的负向子午面光扇的最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NLTA表示,所述光学成像系统的负向子午面光扇的最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以NSTA表示,所述光学成像系统的弧矢面光扇的最长工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SLTA表示,所述光学成像系统的弧矢面光扇的最短工作波长通过入射光瞳边缘并入射在所述成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≦100微米;PSTA≦100微米;NLTA≦100微米;NSTA≦100微米;SLTA≦100微米;SSTA≦100微米;以及│TDT│<100%。3.如权利要求1所述的光学成像系统,其特征在于,上述透镜中任一透镜的任一表面的最大有效半径以EHD表示,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着所述表面的轮廓直到所述表面的最大有效半径处为终点,前述两点间的轮廓曲线长度为ARS,其满足下列公式:0.9≦ARS/EHD≦2.0。4.如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列公式:0mm<HOS≦50mm。5.如权利要求1所述的光学成像系统,其特征在于,所述成像面为一平面或一曲面。6.如权利要求1所述的光学成像系统,其特征在于,以所述第四透镜的物侧面于光轴上的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE41,以所述第四透镜的像侧面于光轴上的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE42,所述第四透镜于光轴上的厚度为TP4,其满足下列条件:0.05≦ARE41/TP4≦25;以及0.05≦ARE42/TP4≦25。7.如权利要求1所述的光学成像系统,其特征在于,以所述第三透镜的物侧面于光轴上的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE31,以所述第三透镜的像侧面于光轴上的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE32,所述第三透镜于光轴上的厚度为TP3,其满足下列条件:0.05≦ARE31/TP3≦25;以及0.05≦ARE32/TP3≦25。8.如权利要求1所述的光学成像系统,其特征在于,所述第一透镜具有负屈折力。9.如权利要求1所述的光学成像系统,其特征在于,还包括一光圈,并且所述光圈至所述成像面于光轴上具有一距离InS,其满足下列公式:0.2≦InS/HOS≦1.1。10.一种光学成像系统,其特征在于,由物侧至像侧依次包括:一第一透镜,具有屈折力;一第二透镜,具有屈折力;一第三透镜,具有屈折力;一第四透镜,具有屈折力;以及一成像面,其中所述光学成像系统具有屈折力的透镜为四枚且所述第一透镜至所述第四透镜中至少一枚透镜的各自的至少一表面具有至少一反曲点,所述第二透镜至所述第四透镜中至少一枚透镜具有正屈折力,所述第一透镜至所述第四透镜的焦距分别为f1、f2、f3、f4,所述光学成像系统的焦距为f,所述光学成像系统的入射光瞳直径为HEP,所述第一透镜物侧面至所述成像面于光轴上具有一距离HOS,所述第一透镜物侧面至所述第四透镜像侧面于光轴上具有一距离InTL,所述光学成像系统的最大可视角度的一半为HAF,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着所述表面的轮廓直到所述表面上距离光轴1/2入射光瞳直径的垂直高度处的坐标点为止,前述两点间的轮廓曲线长度为ARE,其满足下列条件:1≦f/HEP≦10;0deg<HAF≦150deg以及0.9≦2(ARE/HEP)≦2.0。11.如权利要求10所述的光学成像系统,其特征在于,上述透镜中任一透镜的任一表面的最大有效半径以EHD表示,以上述透镜中任一透镜的任一表面与光轴的交点为起点,沿着所述表面的轮廓直到所述表面...

【专利技术属性】
技术研发人员:赖建勋唐乃元张永明
申请(专利权)人:先进光电科技股份有限公司
类型:发明
国别省市:中国台湾,71

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1