当前位置: 首页 > 专利查询>东南大学专利>正文

一种基于短周期均值方差的新能源储能配置优化方法技术

技术编号:16760092 阅读:67 留言:0更新日期:2017-12-09 04:35
本发明专利技术公开了一种基于短周期均值方差的新能源储能配置优化方法,以15min为一个周期,采集前一运行周期的风、光均值与方差数据;以均值数据为基础,再通过对方差数据进行合理加权来决定减载比例,以此决定下一运行周期能向市场供应的投标值;在运行过程中,通过互补控制实现新能源有功平滑输出,达到最终优化储能容量的目的。本发明专利技术所述方法相较于传统的新能源固定比例减载,可明显减小新能源所需配置的储能容量并保证新能源有功输出稳定,相较于其他减载计算方法,本发明专利技术算法所需数据量小、易于实现,有利于新能源在实时电力市场中盈利,具有很好的可行性和实用价值。

A new energy storage configuration optimization method based on short period mean variance of new energy

The present invention discloses a new kind of energy storage in short period mean variance to configuration optimization method based on 15min for a period, before the acquisition operation cycle of the wind and light mean and variance to mean the data; the data as the foundation, through the variance weighted data to determine reasonable load reduction ratio, in order to decide a cycle of operation to the market supply of the bid value; in the operation process, through the implementation of new energy complementary control active power smoothing output, to achieve the ultimate objective of the optimization of storage capacity. New energy fixed proportion of the method of the invention is compared with the traditional load reduction, can significantly reduce the energy required for the new configuration of energy storage capacity and ensure that the new energy power output stability, compared with other load calculation method, the algorithm requires a small amount of data, easy to implement, is conducive to the new energy power profit in real time in the market, has good feasibility and practical value.

【技术实现步骤摘要】
一种基于短周期均值方差的新能源储能配置优化方法
本专利技术涉及电力系统控制领域,尤其是一种基于短周期均值方差的新能源储能配置优化方法。
技术介绍
分布式发电是目前世界广泛采用的消纳新能源发电的方式之一。然而在现有电网中,消纳分布式新能源主要面临两大挑战。(1)新能源输出功率的波动难以避免;随着分布式新能源接入配电网的数量逐渐增加,有功波动会导致系统频率稳定问题,影响运行安全。(2)新能源发电预测误差大;在日前市场模式下,新能源实际输出与预测相差很大,限制了新能源发电参与电力市场的可能。为解决以上问题,配备储能单元成为了不可或缺的手段。以张北国家风光储输示范工程为例,考虑到安全裕度,配备储能的容量高达总装机容量的14.4%。而在实际运行中,新能源发电一般低于总装机容量,风光总功率最小约2.4MW,最大约为10MW,储能最大放电功率约为4.5MW,最大充电功率约为-6MW,可见储能出力所占比例之大。因此,为优化储能容量、增强新能源的经济性和竞争力,需从自身控制和市场制度两方面着手研究。对新能源自身来说,随着新能源发电技术的不断发展完善,很多新能源分布式发电机本身已经具有一定平滑有功输出功率的能力。目前常采用减载运行策略,将最大功率的5%~10%留作功率备用。然而,这种固定比例的减载造成了能源的浪费,对有功输出波动的抑制作用有限,仍需配备相当容量的储能来确保平滑输出。除利用功率备用外,新能源发电机联合运行控制也成为减少储能容量的重要手段之一。从市场制度方面来说,实时电力市场制度有利于实现新能源市场化、减少储能配置。日前市场不利于新能源的市场竞争,主要因为风电日前预测的平均误差高达风电容量的8%~10%,所需配备的储能很大。而实时电力市场的短时性有利于新能源与市场的对接:随着新能源预测周期的缩短,准确性明显提高,可以有效降低储能容量。2015年初,电改9号文件表明,我国将推进电力市化,包括15~30分钟的实时电力市场。但随着分布式新能源接入配电网的数量逐渐增加,新能源输出有功波动增大,为平滑输出,配备储能必不可少。同时,为符合日前市场规则,导致“新能源预测时间长、输出与预测相差大”问题,为解决该问题,也必须配备储能。然而成本随容量增多而迅速增长。为降低新能源发电配备储能的成本,缩短预测时间,实现新能源的准确预测与互补控制具有十分重要的研究意义与实用价值。
技术实现思路
本专利技术所要解决的技术问题在于,提供一种基于短周期均值方差的新能源储能配置优化方法,能够显著减小所需的储能配置容量,有利于降低新能源发电成本。为解决上述技术问题,本专利技术提供一种基于短周期均值方差的新能源储能配置优化方法,包括如下步骤:(1)载入风力发电机组及光伏发电机组上一运行周期15min的历史运行数据;(2)分别计算上一周期15min风机和光伏历史运行数据的均值和方差;其中,Ini(T-1,tn)和Wsj(T-1,tn)是T-1周期前14min的光强和风速数据,Ini(T-2,tn)和Wsj(T-2,tn)是T-2周期最后1min光强和风速数据,总量N=225;hi1是前一预测周期1min内光强的和,hi2是前一运行周期14min内光强的和,即为该预测周期前15min光照强度的均值,风机同理;(3)根据计算出的均值和方差计算风机和光伏的减载比例和投标值;其中,DPV.i是第i台屋顶光伏随时间变化的减载比例;DWG.j是第j台风机随时间变化的减载比例;aPV、bPV、aWG、bWG是权重系数;是由均值决定的预期输出功率,PPV.i(T)、PWG.j(T)即为第i台屋顶光伏和第j台风机对T时间段的投标值,PSREG(T)为总投标值;(4)计算每个电池的SOC,其中t=4s为检测间隔,η+=0.65和η-=0.95分别为电池充电和放电效率;(5)计算每个电池能提供的最大功率和电池能提供的总功率;其中,PS.k(T)是第k个电池Tth时间间隔内输出的有功(充电时为正,放电时为负),Ps(T)是电池总输出;按照工程实际,设定SOC值控制在[0.2,0.8];(6)进入运行周期,通过实时的天气数据得到所辖新能源分布式发电的所能输出的最大功率和相加得到总最大输出功率(7)实时输出值与投标值的差别首先由自身的剩余出力进行补充,如果不足再通过其他新能源增加输出进行互补,仍不足则通过电池进行补充,最终达到实际输出值与投标值相等的目标。优选的,步骤(5)中,为了保证电池在电力市场每个投标周期内能持续工作,如果SoC低于0.25,电池将不再以额定功率为最大输出功率运行,而是根据SoC计算电池输出值。优选的,步骤(7)中,根据实时输出值与投标值的差别对所处情况进行判断,分为情况一、情况二、情况三进行应对;情况一,新能源分布式电源完全可以依靠相互协调满足集成服务商承诺的投标值,不需要储能出力,当有一台或者多台新能源分布式发电机已经运行到最大运行点,仍然不能提供足够的功率时,由其他分布式发电机根据自己的能力,按照比例提供补偿功率;情况二,通过一定比例的储能可以应对新能源发电的输出波动,当一台或者多台新能源分布式发电机运行到最大运行点,仍然不能满足应该提供的功率,而其他新能源发电机已经用尽减载备用,这时候需要利用电池储能来满足集成服务商对市场的承诺;情况三,新能源分布式发电受到了无法预料的极端天气影响,所有分布式发电机都运行于其最大运行点,储能也达到额定功率,但仍然无法达到向系统的承诺值。一旦出现这种情况,集成服务商将支付辅助服务费用。本专利技术的有益效果为:(1)本专利技术所述的基于短周期均值方差的新能源储能配置优化方法,符合我国未来很可能推行的实时电力市场制度,能够保证新能源的稳定输出,提高电能质量,解决新能源目前面对的弃风弃光问题;(2)相比较于传统的预测与控制方法,本方法显著减小了所需的储能配置容量,有利于降低新能源发电成本。附图说明图1为本专利技术的结构示意图。图2为本专利技术基于短周期均值方差的新能源储能配置优化方法下,针对实际可能发生的三种情况,不配置储能与配置储能的总输出波动情况对比示意图。图3为本专利技术若不采用联合减载,仅采用分别固定10%减载策略时,选取其中一台新能源发电机WG2为例的示意图。图4为本专利技术若采取联合运行措施,但仍采用固定10%减载时,在配备储能进行平滑前后输出示意图。具体实施方式下面结合几种运行中可能出现的实际情况对本专利技术作更进一步的说明。如图1所示,本专利技术主要包括有功预测单元和有功控制单元。有功预测单元包括风机均值方差计算模块、光伏均值方差计算模块和电池状态计算模块。有功控制单元包括风机实时出力采集模块、光伏实时采集模块及差值监控模块。其中:所示风机均值方差计算模块和光伏均值方差计算模块,分别用于采集并计算前一周期15min中的风机、光伏输出有功功率的均值和方差;所述电池状态计算模块,用于计算电池的SOC及计算其所能提供的功率;所述风机实时出力采集模块和光伏实时采集模块,用于实时采集该运行周期15min内的风电机组和光伏功率实测值,传递给差值监控模块;所述差值监控模块,用于将实测值与有功预测单元预测出的投标值进行比较,将差值传输给新能源及储能协调控制单元;所述新能源及储能协调控制单元,根据所面临的不同情况,首先通过新能源自身的出力调整对不足进行补充本文档来自技高网
...
一种基于短周期均值方差的新能源储能配置优化方法

【技术保护点】
一种基于短周期均值方差的新能源储能配置优化方法,其特征在于,包括如下步骤:(1)载入风力发电机组及光伏发电机组上一运行周期15min的历史运行数据;(2)分别计算上一周期15min风机和光伏历史运行数据的均值和方差;

【技术特征摘要】
1.一种基于短周期均值方差的新能源储能配置优化方法,其特征在于,包括如下步骤:(1)载入风力发电机组及光伏发电机组上一运行周期15min的历史运行数据;(2)分别计算上一周期15min风机和光伏历史运行数据的均值和方差;其中,Ini(T-1,tn)和Wsj(T-1,tn)是T-1周期前14min的光强和风速数据,Ini(T-2,tn)和Wsj(T-2,tn)是T-2周期最后1min光强和风速数据,总量N=225;hi1是前一预测周期1min内光强的和,hi2是前一运行周期14min内光强的和,即为该预测周期前15min光照强度的均值,风机同理;(3)根据计算出的均值和方差计算风机和光伏的减载比例和投标值;其中,DPV.i是第i台屋顶光伏随时间变化的减载比例;DWG.j是第j台风机随时间变化的减载比例;aPV、bPV、aWG、bWG是权重系数;是由均值决定的预期输出功率,PPV.i(T)、PWG.j(T)即为第i台屋顶光伏和第j台风机对T时间段的投标值,PSREG(T)为总投标值;(4)计算每个电池的SOC,其中t=4s为检测间隔,η+=0.65和η-=0.95分别为电池充电和放电效率;<...

【专利技术属性】
技术研发人员:张天琪赵剑锋
申请(专利权)人:东南大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1