基于局部梯度三边的图域多尺度红外弱小目标检测方法技术

技术编号:16663195 阅读:42 留言:0更新日期:2017-11-30 12:07
本发明专利技术公开了一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,该方法为:将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号;其次,根据图拉普拉斯矩阵的多尺度变换对局部梯度三边图信号进行多尺度分解,获得图信号在不同尺度下的低高频子带;再次,根据图信号的边权关系对每个尺度的高频子带进行局部加权,并取其中值作为新的中心节点系数,然后对局部加权后的高频子带作乘性融合;最后,对乘性融合后的高频子带进行自适应阈值分割,确定目标空间位置,输出检测结果。

【技术实现步骤摘要】
基于局部梯度三边的图域多尺度红外弱小目标检测方法
本专利技术属于红外图像处理领域,具体涉及一种基于局部梯度三边的图域多尺度红外弱小目标检测方法。
技术介绍
红外弱小目标检测技术是红外成像探测领域中一项极为重要的关键技术,被广泛应用于自动目标识别中。当目标距离红外成像探测系统较远时,目标在所获得的红外图像中不仅没有明显的形状、结构、纹理等特征信息,而且成像面积相对较小,在图像中仅占几个至十几个像素。此外,成像环境的复杂恶劣性和探测器件性能的局限性,使得红外图像通常呈现低对比度、低信噪比、边缘模糊等欠佳的视觉效果;因此,如何从像质较差、信噪比有限、背景干扰复杂的红外图像中稳定有效地检测出弱小目标成为红外成像探测领域的主要技术难点。针对复杂背景下红外弱小目标检测难问题,国内外科研学者已经开展了诸多研究工作,按所处理对象的不同,可将单帧弱小目标检测方法分为基于背景预测的间接检测法和基于目标特征的直接提取法;基于背景预测的检测方法通常采用性能较好的滤波器或滤波算子来对背景成分进行预测估计,通过尽可能多地从原始图像中提取背景杂波成分来间接分离出弱小目标;常用的经典方法有最大均值/中值滤波、形态学本文档来自技高网...
基于局部梯度三边的图域多尺度红外弱小目标检测方法

【技术保护点】
一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,其特征在于,该方法为:将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号;其次,根据图拉普拉斯矩阵的多尺度变换对局部梯度三边图信号进行多尺度分解,获得图信号在不同尺度下的低高频子带;再次,根据图信号的边权关系对每个尺度的高频子带进行局部加权,并取其中值作为新的中心节点系数,然后对局部加权后的高频子带作乘性融合;最后,对乘性融合后的高频子带进行自适应阈值分割,确定目标空间位置,输出检测结果。

【技术特征摘要】
1.一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,其特征在于,该方法为:将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号;其次,根据图拉普拉斯矩阵的多尺度变换对局部梯度三边图信号进行多尺度分解,获得图信号在不同尺度下的低高频子带;再次,根据图信号的边权关系对每个尺度的高频子带进行局部加权,并取其中值作为新的中心节点系数,然后对局部加权后的高频子带作乘性融合;最后,对乘性融合后的高频子带进行自适应阈值分割,确定目标空间位置,输出检测结果。2.根据权利要求1所述的一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,其特征在于,所述将含弱小目标的红外图像转化成以节点和其边权关系为表示方式的局部梯度三边图信号具体为:(一)生成以局部平均梯度表示目标和边缘信息的节点具体方法是在原始图像的局部窗口内计算中心像素对邻域像素的平均梯度,并将该梯度像素点作为窗口的中心节点。按此方式遍历整幅图像,获得表示目标和边缘信息的节点,式中,Ωk×k表示大小为k×k的局部窗口,I(i,j)和I(p,q)分别表示窗口内中心位置(i,j)和位置(p,q)处的像素灰度,为窗口内中心位置(i,j)的平均梯度,表示具有图像位置(i,j)处梯度值sij的节点,共N个;(二)生成基于局部三边因子的节点间相邻关系边权设计一个同时考虑强度、梯度和距离的三边因子来衡量窗口内中心节点与近邻节点间的相似性,确定二者的边权关系;而对于窗口外的节点则令边权为零,式中,表示中心节点与节点之间的边权,表示大小为l×l的局部窗口,Ws、和Wd分别为三边因子中强度、梯度和距离的贡献权值,其具体表达式为Ws=exp(-|sxy-smn|)(4)Wd=exp(-(|x-m|+|y-n|))(6)式中,|·|表示取绝对值,τ为预设的梯度阈值。3.根据权利要求2所述的一种基于局部梯度三边的图域多尺度红外弱小目标检测方法,其特征在于,所述根据图拉普拉斯矩阵的多尺度变换对局部梯度三边图信号进行多尺度分解,获得图信号在不同尺度下的低高频子带,具体为:在图的谱域内,设计一族基于图拉普拉斯矩阵的低通和带通变换函数...

【专利技术属性】
技术研发人员:秦翰林曾庆杰李佳吴金莎梁瑛杨硕闻延翔王婉婷程文雄王春妹
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1