一种基于自适应控制器的建筑物节能系统技术方案

技术编号:16325318 阅读:45 留言:0更新日期:2017-09-29 17:59
本实用新型专利技术公开了一种基于自适应控制器的建筑物节能系统。该系统主要包括主控器、用于检测室内温度的温度传感器、用于检测室内二氧化碳浓度的二氧化碳传感器和用于检测能耗的能耗计量装置,各个传感器和计量装置通过相应的从控器与主控器相连。本实用新型专利技术可对室内温度、二氧化碳浓度和能耗等因素进行实时监控,并采取相应行为动作实现节能,同时还保证了使用者的舒适度。该节能系统结构简单,方便安装和维护,充分满足了实际需要。

A building energy saving system based on adaptive controller

The utility model discloses a building energy saving system based on an adaptive controller. The system mainly comprises a main controller, a temperature sensor used for detecting, the indoor temperature is used to detect the indoor concentration of carbon dioxide and carbon dioxide sensor for energy metering device for detecting the energy consumption of each sensor, and the metering device from the controller and main controller are connected through corresponding. The utility model can monitor the indoor temperature, the concentration of carbon dioxide, the energy consumption and other factors in real time, and adopt corresponding actions to realize energy saving, and meanwhile, the comfort degree of the user is guaranteed. The energy-saving system has the advantages of simple structure, convenient installation and maintenance, and fully meets the actual needs.

【技术实现步骤摘要】
一种基于自适应控制器的建筑物节能系统
本技术属于建筑节能
,尤其涉及基于自适应控制器的建筑物节能系统、自适应控制器的控制方法及自适应控制器的仿真方法。
技术介绍
自20世纪70年代后期,在一些西方国家开始出现:室内空气质量(indoorairquality,IAQ)的说法,其发展是近十年以来国际环保界最关注的课题之一。有研究表明,现代人平均花90%的时间在室内度过,因此室内空气质量的好坏会直接影响现代人的身体健康。由此可见IAQ理应作为建筑物设计标准的重要部分和建筑物评估过程中重视的问题。二氧化碳(carbondioxide,CO2)浓度是IAQ中的一个重要指标,当CO2浓度低时对人体无害,但其超过一定浓度时会影响到人类的呼吸:CO2在大气中含量超过1%时,人就会有轻度头晕反应;当超过3%时,开始出现呼吸困难;超过6%时,就会重度缺氧窒息甚至死亡。纵观近几十年建筑领域的发展,建筑结构设计与设备管理方面,特别是涉及到生态控制和能源消耗的领域上,都有很显著的进步和变化。一个明显的转折点是在七十年代石油危机爆发之后,提出封闭的建筑物以最小化建筑物的能源消耗这一概念,但是这导致室内空气质量直线下降和全世界范围的健康问题。这就直接造成了研究确保人类舒适度的前提下,同时联系光照、温湿度和空气质量等其他因素的研究趋势。在现有的能耗研究中,建筑物能耗占世界范围内总基础能耗的45%,这是在总能源消耗中占比例最高的一项。全球范围的建筑能耗,包括民用住宅和商业建筑,在发达国家每年的增长速率已达到20%-40%。然而在一项调查中,商业建筑物的年均耗能大约是70-300kWh/m2,这个数据是民用住宅的10到20倍。人口的增长、建筑服务压力的提升和舒适标准的提高都增大了建筑物的能源消耗,这些预示着未来仍然会持续能源需求的增长趋势。正是因为上述原因,建筑节能已然成为当今所有国家和国际水平在能源政策上重视的首要目标。建筑物的能源消耗问题已经得到越来越多的关注,毕竟建筑物是与人类生活工作息息相关的,也是现代化发展中必不可少的一个环节。由此可见,研发出一种满足实际需要的可对室内温度和二氧化碳浓度等指标进行监控,并有效实现建筑物节能的系统显得尤为紧迫和必要。现有技术中,已经有类似的建筑物节能系统的报道。但现有的建筑物节能系统的组成比较复杂,不够智能化,使用不便。不能满足实际需要。
技术实现思路
本技术解决的技术问题是提供一种基于自适应控制器的建筑物节能系统,该系统结构简化、便于安装和使用,满足实际需求。本技术解决其技术问题所采用的技术方案是:基于自适应控制器的建筑物节能系统,包括空调系统、电动开窗系统和通风系统,还包括主控器、用于检测室内温度的温度传感器、用于检测室内二氧化碳浓度的二氧化碳传感器和用于检测能耗的能耗计量装置;所述温度传感器与温度从控器相连,所述温度从控器包括与温度传感器相连的温度数据采集模块以及与温度数据采集模块相连的第一通信模块;所述二氧化碳传感器与二氧化碳从控器相连,所述二氧化碳从控器包括与二氧化碳传感器相连的二氧化碳数据采集模块以及与二氧化碳数据采集模块相连的第二通信模块;所述能耗计量装置与能耗从控器相连,所述能耗从控器包括与能耗计量装置相连的能耗数据采集模块以及与能耗数据采集模块相连的第三通信模块;所述主控器包括自适应控制器以及与自适应控制器相连的第四通信模块,所述第一通信模块、第二通信模块以及第三通信模块分别与第四通信模块无线连接,所述空调系统、电动开窗系统和通风系统分别与第四通信模块无线连接。空调系统、电动开窗系统和通风系统的主控器可通过无线模块与第四通信模块相连,进而可通过自适应控制器来控制各个系统的行为动作。进一步的是,所述自适应控制器为ArduinoUNO控制器,所述第四通信模块为Esp8266-01无线模块。进一步的是,所述温度传感器为DS18B20温度传感器,所述温度数据采集模块为ArduinoUNO控制器,所述第一通信模块为Esp8266-01无线模块。进一步的是,所述二氧化碳传感器为VS08二氧化碳传感器,所述二氧化碳数据采集模块为ArduinoUNO控制器,所述第二通信模块为Esp8266-01无线模块。进一步的是,所述能耗计量装置为MSP430AFE2xx微控制器,所述能耗数据采集模块为ArduinoUNO控制器,所述第三通信模块为Esp8266-01无线模块。进一步的是,还包括电动窗帘系统以及光强传感器,所述光强传感器与光强数据采集模块相连,所述光强数据采集模块与第五通信模块相连,所述第五通信模块与第四通信模块无线连接,所述电动窗帘系统与第四通信模块无线连接,所述光强传感器为TSL2561光强传感器,所述光强数据采集模块为ArduinoUNO控制器,所述第五通信模块为Esp8266-01无线模块。本技术的有益效果是:本技术的基于自适应控制器的建筑物节能系统,可对室内温度、二氧化碳浓度和能耗等因素进行实时监控,并采取相应行为动作实现节能,同时还保证了使用者的舒适度。该节能系统结构简单,方便安装和维护,充分满足了实际需要。附图说明图1为基于自适应控制器的建筑物节能系统的第一种实施方式示意图;图2为基于自适应控制器的建筑物节能系统的第二种实施方式示意图;图3为实验一总回报收敛图;图4为实验一每个情节收敛步数示意图;图5为实验一收敛后室内温度变化图;图6为实验一收敛后CO2浓度变化图;图7为实验二总回报收敛图;图8为实验二每个情节收敛步数示意图;图9为实验二收敛后室内温度变化图;图10为实验二收敛后CO2浓度变化图;图11为实验三总回报收敛图;图12为实验三每个情节收敛步数示意图;图13为实验三收敛后室内温度变化图;图14为实验三收敛后CO2浓度变化图;图15为实验四总回报收敛图;图16为实验四每个情节收敛步数示意图;图17为实验四收敛后室内温度变化图;图18为实验四收敛后CO2浓度变化图;图19为实验五总回报收敛图;图20为实验五每个情节收敛步数示意图;图21为实验五收敛后室内温度变化图;图22为实验五收敛后CO2浓度变化图。具体实施方式下面结合附图和具体实施方式对本技术进一步说明。本技术的基于自适应控制器的建筑物节能系统可参考图1所示,其包括空调系统、电动开窗系统和通风系统,上述各个系统都是现有技术中建筑物内已经安装使用的系统,在此基础上,还包括主控器、用于检测室内温度的温度传感器、用于检测室内二氧化碳浓度的二氧化碳传感器和用于检测能耗的能耗计量装置,温度传感器和二氧化碳浓度传感器可安装在室内,能耗计量装置可安装在总闸处用于检测各个系统的能耗值,所述温度传感器与温度从控器相连,所述温度从控器包括与温度传感器相连的温度数据采集模块以及与温度数据采集模块相连的第一通信模块,所述二氧化碳传感器与二氧化碳从控器相连,所述二氧化碳从控器包括与二氧化碳传感器相连的二氧化碳数据采集模块以及与二氧化碳数据采集模块相连的第二通信模块,所述能耗计量装置与能耗从控器相连,所述能耗从控器包括与能耗计量装置相连的能耗数据采集模块以及与能耗数据采集模块相连的第三通信模块,所述主控器包括自适应控制器以及与自适应控制器相连的第四通信模块,所述第一通信模块、第二通信模块以及第三通本文档来自技高网
...
一种基于自适应控制器的建筑物节能系统

【技术保护点】
一种基于自适应控制器的建筑物节能系统,包括空调系统、电动开窗系统和通风系统,还包括主控器、用于检测室内温度的温度传感器、用于检测室内二氧化碳浓度的二氧化碳传感器和用于检测能耗的能耗计量装置;所述温度传感器与温度从控器相连,所述温度从控器包括与温度传感器相连的温度数据采集模块以及与温度数据采集模块相连的第一通信模块;所述二氧化碳传感器与二氧化碳从控器相连,所述二氧化碳从控器包括与二氧化碳传感器相连的二氧化碳数据采集模块以及与二氧化碳数据采集模块相连的第二通信模块;所述能耗计量装置与能耗从控器相连,所述能耗从控器包括与能耗计量装置相连的能耗数据采集模块以及与能耗数据采集模块相连的第三通信模块;所述主控器包括自适应控制器以及与自适应控制器相连的第四通信模块,所述第一通信模块、第二通信模块以及第三通信模块分别与第四通信模块无线连接,所述空调系统、电动开窗系统和通风系统分别与第四通信模块无线连接。

【技术特征摘要】
1.一种基于自适应控制器的建筑物节能系统,包括空调系统、电动开窗系统和通风系统,还包括主控器、用于检测室内温度的温度传感器、用于检测室内二氧化碳浓度的二氧化碳传感器和用于检测能耗的能耗计量装置;所述温度传感器与温度从控器相连,所述温度从控器包括与温度传感器相连的温度数据采集模块以及与温度数据采集模块相连的第一通信模块;所述二氧化碳传感器与二氧化碳从控器相连,所述二氧化碳从控器包括与二氧化碳传感器相连的二氧化碳数据采集模块以及与二氧化碳数据采集模块相连的第二通信模块;所述能耗计量装置与能耗从控器相连,所述能耗从控器包括与能耗计量装置相连的能耗数据采集模块以及与能耗数据采集模块相连的第三通信模块;所述主控器包括自适应控制器以及与自适应控制器相连的第四通信模块,所述第一通信模块、第二通信模块以及第三通信模块分别与第四通信模块无线连接,所述空调系统、电动开窗系统和通风系统分别与第四通信模块无线连接。2.如权利要求1所述的一种基于自适应控制器的建筑物节能系统,其特征在于,所述自适应控制器为ArduinoUNO控制器,所述第四通信模块为Esp8266-01无线模块。3.如权利要求1所述的一种基于自适应控制器的...

【专利技术属性】
技术研发人员:傅启明胡龄爻陈建平林莉罗恒傅朝阳
申请(专利权)人:苏州科技大学
类型:新型
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1