【技术实现步骤摘要】
基于小波变换的多模态医学图像融合方法
本专利技术涉及医疗领域,尤其是采用图像处理技术对多模态医学图像进行融合的方法,具体地说是一种基于小波变换的多模态医学图像融合方法。
技术介绍
目前,随着计算机科学技术和医疗影响工程学的快速发展,世界上出现了许多先进的医疗成像设备,为临床医学诊断提供了多种模态的医学图像,这些图像从不同方面反映了人体结构、脏器和病变组织的不同信息。比如CT(ComputedTomography)图像具有较强的空间分辨率和几何特性,对骨骼的成像非常清晰,它可对病灶定位提供较好的参照,但对软组织的对比度则相对较低。MR(MagneticResonance)图像可以清晰地反映软组织、器官、血管等的解剖结构,有利于确定病灶范围,但是MR图像对钙化点不敏感,且受到磁干扰会发生几何失真。SPEC、PET图像能得到人体任意角度断层面的放射性浓度分布,可以反映组织器官的代谢水平和血流状况,对肿瘤病变呈现“热点”,提供人体的功能信息,但是它们的分辨率差,很难得到精确的解剖结构,也不易分辨组织、器官的边界。由此可见,不同成像技术有着自身的优势也同时拥有一些局限性,这 ...
【技术保护点】
一种基于自适应小波基的多模态医学图像融合方法,其特征是它包括以下步骤:S1、采用自适应小波基滤波器对不同模态的医学图像进行小波变换,将前述图像分别分解为高频、低频以及高低频结合的分量;S2、对任意两幅不同模态医学图像分解得到的高频、低频和高低频结合的分量进行叠加,得到融合图像的高频、低频和高低频结合的分量;S3、对融合图像的高频、低频和高低频结合的分量进行离散小波逆变换,得到原始大小的融合图像。
【技术特征摘要】
1.一种基于自适应小波基的多模态医学图像融合方法,其特征是它包括以下步骤:S1、采用自适应小波基滤波器对不同模态的医学图像进行小波变换,将前述图像分别分解为高频、低频以及高低频结合的分量;S2、对任意两幅不同模态医学图像分解得到的高频、低频和高低频结合的分量进行叠加,得到融合图像的高频、低频和高低频结合的分量;S3、对融合图像的高频、低频和高低频结合的分量进行离散小波逆变换,得到原始大小的融合图像。2.根据权利要求1所述的基于小波变换的多模态医学图像融合方法,其特征是所述的步骤S1中,根据尺度需求对低频分量进行再次分解。3.根据权利要求1所述的基于小波变换的多模态医学图像融合方法,其特征是所述的步骤S1具体为:S1.1、构造小波基滤波器库,即以满足正交条件定长小波滤波器为基础,在不同的初值条件下得到多个滤波器系数构建小波基滤波器库,在小波基滤波器库中随机选择一个滤波器系数作为初始化滤波器;S1.2、采用初始化滤波器对多个模态的医学图像进行小波变换得到第一层分解分量,即通过离散小波变换获得图像在水平和垂直方向上的低频分量LL1、水平方向上的低频和垂直方向上的高频分量LH1、水平方向上的高频和垂直方向上的低频分量HL1以及水平和垂直方向上的高频分量HH1;S1.3、根据图像的能量分布和纹理波动在小波基滤波器库中再次选择滤波器系数对步骤S1.2获取的第一层分解分量中的低频分量LL1进行第二次小波变换,得到LL2、HH2、HL2、LH2重复步骤S1.3若干次,完成图像分解。4.根据权利要求3所述的基于小波变换的多模态医学图像融合方法,其特征是所述的步骤S1.3中,重复步骤S1.3进行图像分解的次数为3-5次。5.根据权利要求3所述的基于小波变换的多模态医学图像融合方法,其特征是所述的步骤S1.3中,根据图像的能量分布和纹理波动在小波基滤波器库中选择滤波器系数的具体方法为:S1.3-1、对图像进行器官提取的步骤:对当前分解分量中的四个分量进行处理,从黑色的背景上将人体器官提取出来,具体采用图像分割方法提取人体器官,或者采用设置边界阈值的方法提取人体器官图像HLo和LHo;S1.3-2、计算图像纹理特征参数的步骤:采用下述公式计算横向的图像最小能量Eh、纵向的图像最小能量Ev、横向的图像最小极差Ep、纵向的图像最小极差Eq、横向纹路最大波动值Em和纵向纹路最大波动值En;Eh=min(max(|HLo|))(1)Ev=min(max(|LHo|))(2)Ep=min(max(|HLo|)-min(|HLo|))(3)Eq=min(max(|LHo|)-min(|LHo|))(4)
【专利技术属性】
技术研发人员:王晓芳,
申请(专利权)人:南京觅踪电子科技有限公司,
类型:发明
国别省市:江苏,32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。