一种用于孤子自频移全光模数转换的编码装置及方法制造方法及图纸

技术编号:15328153 阅读:142 留言:0更新日期:2017-05-16 12:06
本发明专利技术涉及光电技术领域,具体涉及一种用于孤子自频移全光模数转换的编码装置及方法。本发明专利技术装置包括色散补偿光纤,色散补偿光纤连接有1×N耦合器,所述1×N耦合器连接有滤波器阵列,所述滤波器阵列由N路Sagnac环梳状滤波器构成。本发明专利技术利用色散补偿光纤对孤子自频移光量化后具有不同中心波长的光脉冲进行延迟补偿,保证编码的时序正确性;通过合理设计保偏光纤双折射大小,保证相邻Sagnac环梳状滤波器周期呈倍数增长,并通过调节偏振控制器控制透射峰的波长,实现基于光学梳状滤波的N位二进制编码输出。本发明专利技术具有工作波长范围大、可调谐性强、结构简单、体积和重量较小、成本低廉等优点,显著提高了编码的精度和灵活性。

Coding device and method for soliton self frequency shift all optical analog to digital conversion

The invention relates to the field of photoelectric technology, in particular to a coding device and method for soliton self frequency shift all optical analog to digital conversion. The device comprises a dispersion compensating optical fiber, and the dispersion compensating optical fiber is connected with a 1 * N coupler, the 1 * N coupler is connected with a filter array, and the filter array is composed of a N path Sagnac ring comb filter. The invention utilizes the dispersion compensation fiber with different center wavelength of the optical soliton self frequency shift quantized optical pulse delay compensation, to ensure the correct timing of encoding; by reasonable design of polarization maintaining fiber birefringence, ensure the adjacent Sagnac ring comb filter cycle is multiplied, and by adjusting the polarization controller to control the transmission peak wavelength optical comb filter, binary encoding output based on N. The invention has the advantages of large working wavelength range, high tunability, simple structure, small volume and weight, low cost, etc., and remarkably improves the coding accuracy and flexibility.

【技术实现步骤摘要】
一种用于孤子自频移全光模数转换的编码装置及方法
本专利技术涉及光电
,具体涉及一种用于孤子自频移全光模数转换的编码装置及方法。
技术介绍
模数转换器用于将连续模拟信号转换成离散数字信号,是信息处理系统中的关键器件,在高速宽带通信系统、雷达信号处理、信号监测及处理等领域有着重要应用。目前,电子学ADC应用最为广泛,但由于载流子迁移速率存在物理极限,其模拟带宽和采样速率有限,并且由于受到诸如采样时间抖动、比较器不确定性、晶体管阈值失配等因素的限制,采样速率每增加一倍,有效位数下降一位(R.H.Walden,Analog-to-digitalconvertersurveyandanalysis,IEEE.J.Select.AreasCommun.,Vol.17,1999:539-550),因此,电子学ADC始终很难在带宽10GHz以上获得较高的量化精度。例如,目前最高速的电子学ADC为美国Tektronix的16GHz带宽ADC,以及日本Fujitsu的15GHz带宽ADC,但它们的有效位数均低于6位。光学ADC利用超短光脉冲高速、宽带、高稳定性等优点,可实现几十GHz频段范围内100GS/s以上的高精度采样,并且借助电子学或光学方法实现量化和编码,被视为能够同时实现宽带、高速、高精度模数转换的有效途径。根据光学技术在模数转换过程中所完成的功能,光学ADC主要分为四大类:光采样电量化ADC、电采样光量化ADC、光学辅助ADC、全光ADC。在以上四类光学ADC中,全光ADC在采样、量化、编码过程中均充分发挥了光学技术超宽带、超高速、高稳定度等特点,并且有望在未来光网络中摒弃“光-电-光”转换的传统做法,实现全光信号处理,因此,被认为是有望突破ADC带宽、速率和精度极限最具潜力的技术之一。在全光模数转换
,目前最具应用潜力的是基于孤子自频移效应(SSFS,Solitonself-frequencyshift)的全光ADC,2002年日本大阪大学T.Konishi等人提出将采样后的超短光脉冲送入具有反常色散的高非线性光纤中进行传输,利用SSFS效应实现光量化(T.Konishi,K.Tanimura,K.Asano,etal.All-opticalanalog-to-digitalconverterbyuseofself-frequencyshiftinginfiberandapulse-shapingtechnique.J.Opt.Soc.Am.B,2002,19(11):2817-2823)。其物理本质为:超短光脉冲(亚皮秒量级脉宽)的谱宽很宽,脉冲频谱的蓝移分量可作为泵浦光,通过拉曼增益有效地放大同一脉冲的红移分量,此过程在光纤中持续进行致使能量不断从蓝移分量转移到红移分量,表现为孤子频谱的整体红移。对于固定长度的光纤,孤子的自频移量正比于输入光脉冲的强度,因此,光量化通过“强度—波长”映射来实现。编码作为孤子自频移全光ADC的最后一个环节,需要针对SSFS之后不同峰值功率光脉冲具有不同中心波长的特点,通过某种特定的映射关系,形成具有一定位数的二进制编码光脉冲输出。由于实现SSFS的高非线性光纤具有反常色散特性,不同中心波长的光脉冲传播速度不同,存在走离效应,在采样速率较高的情况下,甚至会导致脉冲序列时序上出现错乱,造成编码错误,因此在编码时必须对不同波长的光脉冲进行延迟补偿。目前主要有两种光学编码方法,第一种是日本大阪大学T.Konishi等人提出的光互连编码方法(T.Nishitani,T.Konishi,K.Itoh.Resolutionimprovementofall-opticalanalog-to-digitalconversionemployingself-frequencyshiftandself-phase-modulation-inducedspectralcompression.IEEEJ.Sel.Top.Quan.Electron.,2008,14(3):724-732)。其工作原理为:利用阵列波导光栅(AWG,Arrayedwaveguidegrating)等空间色散元件将不同波长的光脉冲路由到不同的空间路径,然后通过波长路径与二进制编码路径的光互连实现编码。该方法的缺点在于:光互连结构的复杂度随着编码位数呈几何级数增长,当编码位数较多时,系统结构相当复杂,并且各个波长通道间的延迟通过控制光纤长度进行补偿,补偿难度非常大。第二种光学编码方法是美国康奈尔大学C.Xu等人提出的光学梳状滤波编码方法(C.Xu,X.Liu.Photonicanalog-to-digitalconverterusingsolitonself-frequencyshiftandinterleavingspectralfilters.Opt.Lett.,2003,28(12):986-988)。其工作原理为:利用功分器将量化后的光脉冲序列等分为N路完全一致的样本,每一路光脉冲样本经过一个光学梳状滤波器,只要保证相邻通道中梳状滤波器的周期呈倍数关系增长,就能通过滤波获得N位光学编码输出。2015年日本大阪大学M.Hasegawa等人利用可编程光滤波器(Waveshaper)构建三通道光学梳状滤波器实现了3bits的二进制编码(M.Hasegawa,T.Satoh,T.Nagashima,etal.Below100-fstimingjitterseamlessoperationsin10G3-bitphotonicanalog-to-digitalconversion.IEEEPhoton.J.,2015,7(3):7201007)。但目前的光学滤波编码方法难以实现不同通道间的精确色散延迟补偿,如果不克服这一难题,在采样脉冲间隔较小的超高速采样速率情况下,采样脉冲序列在时序上会由于色散形成的走离效应出现脉冲时序错乱,造成编码错误。实际上,前面介绍的光学滤波编码方法都没有涉及精确色散延迟补偿。此外,利用Waveshaper实现光学编码具有价格昂贵、体积和重量较大等缺点,最致命的是其工作波长范围较小,与量化后的光脉冲波长范围严重不匹配,非常不利于实现高精度的光学编码。
技术实现思路
本专利技术的目的在于:针对现有光学编码中出现的编码时序容易混乱、工作波段较窄、编码位数扩展不易、系统结构复杂可调节性差的问题,提出一种用于孤子自频移全光模数转换的编码装置及方法。本专利技术采用的技术方案如下:一种基于Sagnac环梳状滤波的光学编码装置,包括色散补偿光纤,色散补偿光纤连接有1×N耦合器,所述1×N耦合器连接有滤波器阵列,所述滤波器阵列由N路Sagnac环梳状滤波器构成,所述第N路Sagnac环梳状滤波器的滤波周期为第一路Sagnac环梳状滤波器的滤波周期的2N倍,其中N为大于等于2的正整数。进一步的,所述Sagnac环梳状滤波器包括3dB耦合器、偏振控制器、保偏光纤;3dB耦合器的第一端口连接1×N耦合器的一个输出端,其第三端口和第四端口间依次串联有偏振控制器和保偏光纤,其第二输出端作为编码比特位的输出端。一种基于Sagnac环梳状滤波的光学编码方法,所述步骤为:a.将经过SSFS的光脉冲通过色散补偿光纤进行延迟补本文档来自技高网
...
一种用于孤子自频移全光模数转换的编码装置及方法

【技术保护点】
一种基于Sagnac环梳状滤波的光学编码装置,其特征在于,包括色散补偿光纤,色散补偿光纤连接有1×N耦合器,所述1×N耦合器连接有滤波器阵列,所述滤波器阵列由N路Sagnac环梳状滤波器构成,所述第N路Sagnac环梳状滤波器的滤波周期为第一路Sagnac环梳状滤波器的滤波周期的2

【技术特征摘要】
1.一种基于Sagnac环梳状滤波的光学编码装置,其特征在于,包括色散补偿光纤,色散补偿光纤连接有1×N耦合器,所述1×N耦合器连接有滤波器阵列,所述滤波器阵列由N路Sagnac环梳状滤波器构成,所述第N路Sagnac环梳状滤波器的滤波周期为第一路Sagnac环梳状滤波器的滤波周期的2N-1倍,其中N为大于等于2的正整数。2.根据权利要求1所述的一种基于Sagnac环梳状滤波的光学编码装置,其特征在于,所述Sagnac环梳状滤波器包括3dB耦合器、偏振控制器、保偏光纤;3dB耦合器的第一端口连接1×N耦合器的一个输出端,其第三端口和第四端口间依次串联有偏振控制器和保偏光纤,其第二输出端作为编码比特位的输出端。3.一种基于Sagnac环梳状滤波的光学编码方法,其特征在于,所述步骤为:a.将经过SSFS的光脉冲通过色散补偿光纤进行延迟补偿,使光脉冲的时序恢复采样时的时序;b.将经过延迟补偿的光脉冲序列通过1×N耦合器均分后输入N路Sagnac环梳状滤波器构成的滤波器阵列;滤波器阵列中第N路Sagnac环梳状滤波器的滤波周期为第一路Sagnac环梳状滤波器的滤波周期的2N-1倍;c.每路Sagnac...

【专利技术属性】
技术研发人员:王舒冰彭迪张旨遥张戌艳李和平刘永
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1