一种膨胀型无卤阻燃EVA基复合材料及其制备方法技术

技术编号:14779499 阅读:83 留言:0更新日期:2017-03-09 14:52
本发明专利技术公开了一种膨胀型无卤阻燃EVA基复合材料及其制备方法。该方法通过以氮基三亚甲基磷酸和氧氯化锆为原料,在水热条件下合成了协同阻燃剂氮基三亚甲基磷酸锆;阻燃复合材料则是通过将EVA、成炭剂(淀粉)、阻燃剂;和协同阻燃剂经过挤出、切粒方式制备而成,其中EVA、成炭剂、阻燃剂和协同阻燃剂的质量百分比为50:12.5:(35.5‑32.5):(2‑5)。该复合材料原料无毒无害,制备途径简单、安全,对EVA的阻燃和力学性能起到了明显提升,尤其是燃烧时对成炭起到了显著的促进作用,消除了熔滴现象。

【技术实现步骤摘要】

本专利技术涉及EVA基复合材料的阻燃和增强、增韧领域,具体涉及一种膨胀型无卤阻燃EVA基复合材料及其制备方法
技术介绍
EVA是乙烯和醋酸乙烯酯的共聚物,也是与低密度聚乙烯、高密度聚乙烯、线形低密度聚乙烯并列的又一大类乙烯类共聚物。由于具备优异的的柔韧性、良好的填料相容性、耐低温性、抗老化性、耐腐蚀性等性能,EVA在薄膜、发泡材料、汽车工业、电子工业等领域具有十分广阔的发展前景。但EVA是一类易燃材料,因此EVA在实际应用中必须添加阻燃剂以增强其阻燃性能。由于锆(Zr)原子的核外电子第4层具有空轨道,能够吸收燃烧过程中释放出来的电子,从而促进基体中的碳失电子,形成碳正离子而炭化。因此锆元素在阻燃过程中参与协同阻燃。对促进、催化成炭能够起到特殊作用,能够起到明显的抑制熔滴、减缓燃烧速度的效果。目前,锆元素参与阻燃EVA的技术还没有得到广泛地研究和开发。目前用于EVA阻燃的阻燃剂主要有氢氧化物、磷系阻燃剂、氮系阻燃剂和膨胀型阻燃体系。膨胀型阻燃剂是一类近年来发展很快的环保阻燃剂,在炭源、酸源和气源共同作用下,通过成炭剂自身酯化分解促进成炭,同时不燃性气体进入燃烧物表面,形成连续的发泡膨胀炭层以阻隔火焰的传递和热量的释放。聚磷酸铵(APP)同时具备酸源和气源的功能,阻燃效率很高,在膨胀阻燃剂中被广泛使用。早期用作炭源的物质是季戊四醇(PER),但随着阻燃研究的进一步深入,季戊四醇无论是从阻燃效率还是环保要求上已经无法满足新型阻燃复合材料对性能的要求。而淀粉来源于生物资源,制备方便,成本低廉,且含碳量很高,是作为膨胀阻燃剂炭源的理想材料。
技术实现思路
本专利技术目的是提供一种膨胀型无卤阻燃体系阻燃EVA基复合材料及其制备方法,所制备的复合材料能够满足所需的阻燃性能,热稳定性较好,燃烧时能够生成稳定、致密的膨胀炭层并抑制熔滴。实现本专利技术目的的技术解决方案是:一种膨胀型无卤阻燃EVA基复合材料,所述的复合材料是由EVA、成炭剂、阻燃剂和协同阻燃剂通过熔融共混方法制备而成,其中,所述的EVA、成炭剂、阻燃剂和协同阻燃剂的质量百分比为50:12.5:(35.5-32.5):(2-5)。进一步的,所述成炭剂为食品级淀粉。进一步的,所述阻燃剂为聚磷酸铵,其分子式为(NH4PO3)n,聚合度不小于1500,氮含量不小于14%,其粒径不大于15um。进一步的,所述协同阻燃剂为氮基三亚甲基磷酸锆(Zr-ATMP)。制备上述膨胀型无卤阻燃EVA基复合材料的方法,包括如下步骤:将EVA、淀粉、聚磷酸铵和Zr-ATMP按照所需比例混合均匀后,在双螺杆挤出机中进行2次挤出,挤出温度195℃,挤出机转速为25r/min。进一步的,所述的协同阻燃剂Zr-ATMP通过如下步骤制备:取氮基三亚甲基磷酸于容器中,将氧氯化锆按照质量比为1:5溶于蒸馏水中;待溶解均匀后,于恒温油浴锅中,开启搅拌,在常温下将氧氯化锆溶液缓慢滴入氮基三亚甲基磷酸中,待氧氯化锆溶液滴加完毕后,将油浴温度升高至80±10℃,在搅拌下反应24h以上,离心、洗涤,在不高于60℃下烘干,研磨,得到所述的协同阻燃剂Zr-ATMP。与现有技术相比,本专利技术的进步之处在于:(1)在膨胀阻燃体系中,采用来源于生物资源、价格低廉的淀粉作为成炭剂,降低了生产成本,同时符合环保要求。(2)在膨胀阻燃体系中添加适量的氮Zr-ATMP作为协同阻燃剂,这类磷酸锆类阻燃剂充分发挥了锆元素对成炭的催化作用,提升了阻燃性能,能够将垂直燃烧等级提升到V-0级,氧指数最高可达31.0%。(3)聚磷酸铵本身是一种极性很强的物质,在加入EVA基体后,相容性比较差,复合材料的力学性能将会受到较大的影响。添加适量Zr-ATMP在作为协同阻燃剂的同时,由于锆阻燃剂与EVA基体间的相容性有所好转,材料的强度和柔韧性得到提升,当添加量为1-4wt%时,材料强度与断裂伸长率都比只添加淀粉/聚磷酸铵膨胀阻燃体系有所提升。(4)通过氮基三亚甲基磷酸和氧氯化锆为原料,采用水热法在水溶液中制备协同阻燃剂Zr-ATMP,制备方法简便、安全,制得的产物粒径较小,为纳米尺寸,在复合材料中分散性、相容性较好。附图说明图1为实施例1制备的Zr-ATMP的透射电镜(TEM)图。具体实施方式为了更好地理解,后面通过将对比例和实施例进行比较,来详细说明无卤膨胀型阻燃EVA基复合材料的阻燃性能和力学性能。本专利技术的机理是合成的Zr-ATMP是一种纳米级别有机-无机杂化材料,在基体中的分散较为均匀,在燃烧过程中主要起到凝聚相阻燃的作用,由于锆原子核外电子层具有空轨道,易于从炭源中抢夺电子,导致碳正离子生成进而快速形成致密炭层起到隔绝火焰、氧气和阻隔可燃性气体的作用;Zr-ATMP在燃烧过程中生成焦磷酸锆,能够增强碳层的强度和致密度。同时,Zr-ATMP较好的相容性使填料和基体间相互作用得到增强,并且Zr-ATMP在少量添加时能够与EVA中醋酸乙烯酯酯基形成部分交联,这使得少量添加Zr-ATMP能够对材料起到增强、增韧作用。实施例1:称量EVA粒料50g,淀粉12.5g,聚磷酸铵35.5g,氮基三亚甲基磷酸锆2g,将上述粒料混合均匀后,在温度为195℃,螺杆转速25r/min的条件下,在双螺杆挤出机熔中融共混,制得本专利技术的EVA基复合材料,其电镜图如图1所示,制得的产物粒径较小,为纳米尺寸。经过测试,极限氧指数28.5%,UL-94测试达到V-0级,无熔滴现象产生。复合材料的拉伸强度为9.17MPa,断裂伸长率115.6%.实施例2:称量EVA粒料50g,淀粉12.5g,聚磷酸铵34.5g,氮基三亚甲基磷酸锆3g,将上述粒料在混合均匀后,在温度为195℃,螺杆转速25r/min的条件下,在双螺杆挤出机熔中融共混,制得本专利技术的EVA基复合材料。经过测试,极限氧指数30.0%,UL-94测试达到V-0级,无熔滴现象产生。复合材料的拉伸强度为10.29MPa,断裂伸长率104.9%.实施例3:称量EVA粒料50g,淀粉12.5g,聚磷酸铵33.5g,氮基三亚甲基磷酸锆3g,将上述粒料混合均匀后,在温度为195℃,螺杆转速25r/min的条件下,在双螺杆挤出机熔中融共混,制得本专利技术的EVA基复合材料。经过测试,极限氧指数31.0%,UL-94测试达到V-0级,无熔滴现象产生。复合材料的拉伸强度为9.54MPa,断裂伸长率101.2%.实施例4:称量EVA粒料50g,淀粉12.5g,聚磷酸铵32.5g,氮基三亚甲基磷酸锆5g,将上述粒料在混合均匀后,在温度为195℃,螺杆转速25r/min的条件下,在双螺杆挤出机熔中融共混,制得本专利技术的EVA基复合材料。经过测试,极限氧指数29.0%,UL-94测试达到V-0级,无熔滴现象产生。复合材料的拉伸强度为8.32MPa,断裂伸长率94.7%.对比例:称量EVA粒料50g,淀粉12.5g,聚磷酸铵37.5g,将上述粒料在混合均匀后,在温度为195℃,螺杆转速25r/min的条件下,在双螺杆挤出机熔中融共混,制得的EVA基复合材料。经过测试,极限氧指数27.0%,UL-94测试为V-1级,有熔滴现象。复合材料的拉伸强度为7.33MPa,断裂伸长率86.1%.通过对比例和实施例相比较,可以得出:氮基三亚甲基本文档来自技高网...
一种膨胀型无卤阻燃EVA基复合材料及其制备方法

【技术保护点】
一种膨胀型无卤阻燃EVA基复合材料,其特征在于,所述的复合材料是由EVA、成炭剂、阻燃剂和协同阻燃剂通过熔融共混方法制备而成,其中,所述的EVA、成炭剂、阻燃剂和协同阻燃剂的质量百分比为50:12.5:(35.5‑32.5):(2‑5)。

【技术特征摘要】
1.一种膨胀型无卤阻燃EVA基复合材料,其特征在于,所述的复合材料是由EVA、成炭剂、阻燃剂和协同阻燃剂通过熔融共混方法制备而成,其中,所述的EVA、成炭剂、阻燃剂和协同阻燃剂的质量百分比为50:12.5:(35.5-32.5):(2-5)。2.如权利要求1所述的膨胀型无卤阻燃EVA基复合材料,其特征在于,所述成炭剂为食品级淀粉。3.如权利要求1所述的膨胀型无卤阻燃EVA基复合材料,其特征在于,所述阻燃剂为聚磷酸铵,其分子式为(NH4PO3)n,聚合度n不小于1500,氮含量不小于14%,其粒径不大于15um。4.如权利要求1所述的膨胀型无卤阻燃EVA基复合材料,其特征在于,所述协同阻燃剂为氮基三亚甲基磷酸锆。5.如权利要求1-4...

【专利技术属性】
技术研发人员:王新龙李嘉玮代秀曹雨石小卫霍长安
申请(专利权)人:南京理工大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1