加载石墨烯去耦网络的微带阵列天线制造技术

技术编号:14600865 阅读:126 留言:0更新日期:2017-02-09 04:03
本实用新型专利技术公开一种加载石墨烯去耦网络的微带阵列天线,包括介质板、以及覆于介质板表面的金属地板和2个以上的相互独立的天线阵列单元;2个相邻的天线阵列单元之间设有石墨烯层;该石墨烯层覆于介质板上,且与天线阵列单元之间存在一定的间隙;石墨烯层与一外置直流偏置电压相连接。本实用新型专利技术能够有效降低微带阵列天线中辐射贴片之间的电磁耦合,从而实现阵列天线的紧凑型结构。

【技术实现步骤摘要】

本技术涉及天线及超材料
,具体涉及一种加载石墨烯去耦网络的微带阵列天线。
技术介绍
微带阵列天线因其重量轻、成本低、易加工和便于共形等诸多优点,已经广泛应用于飞机、卫星和导弹等无线通信系统。但是通常认为微带阵列天线单元间距应大于二分之一波长,才能避免辐射单元间的耦合相互影响,以保证天线的辐射性能。然而,尺寸受限的通讯设备往往无法提供微带阵列天线所需的间距,因此,以当前对天线的需求来看,尺寸大小早已成为天线应用的决定性因素。目前,天线阵列间的去耦工作常见的有缺陷地结构(DGS)和谐振结构。其中缺陷地结构是在微带天线地板上开槽或制作其他周期结构,其缺点在于构成缺陷地结构的晶格,尺寸偏大,导致最终的去耦网络所需面较大。谐振结构虽然能够有效降低单元间的耦合,保证隔离度,但是谐振结构会损耗一大部分电磁能量,影响天线阵列整体的辐射性能。
技术实现思路
本技术所要解决的技术问题是现有微带阵列天线存在尺寸大和单元隔离度差的问题,提供一种加载石墨烯去耦网络的微带阵列天线,能够有效降低微带阵列天线中辐射贴片之间的电磁耦合,从而实现阵列天线的紧凑型结构。为解决上述问题,本技术是通过以下技术方案实现的:加载石墨烯去耦网络的微带阵列天线,包括介质板、以及覆于介质板表面的金属地板和2个以上的相互独立的天线阵列单元;2个相邻的天线阵列单元之间设有石墨烯层;该石墨烯层覆于介质板上,且与天线阵列单元之间存在一定的间隙;石墨烯层与一外置直流偏置电压相连接。上述方案中,石墨烯层通过一二氧化硅基底和单晶硅衬底覆于介质板上;其中石墨烯层的下表面与二氧化硅基底的上表面相贴,二氧化硅基底的下表面与单晶硅衬底的上表面相贴,单晶硅衬底的下表面与介质板的上表面相贴。上述方案中,外置直流偏置电压的一端与石墨烯层连接,外置直流偏置电压的另一端与单晶硅衬底连接。上述方案中,所有天线阵列单元的结构相同。上述方案中,每个天线阵列单元均由辐射贴片、阻抗匹配器和馈线组成;辐射贴片覆于介质板的表面上,辐射贴片经由阻抗匹配器与馈线连接。上述方案中,阻抗匹配器和馈线也覆于介质板的表面上。上述方案中,金属地板位于介质板的下表面,所有天线阵列单元均位于介质板的上表面。与现有技术相比,本技术具有如下特点:1.对于不同天线阵,可以通过调整石墨烯的偏置电压和尺寸来提高阵元间的隔离度;2.利用石墨烯降低阵元间的电磁互耦,不会改变天线的工作频率和带宽;3.利用石墨烯降低阵元间的电磁互耦,能够在保证天线辐射性的能情况下,将阵元间的距离压缩到小于0.05倍波长。附图说明图1为一种加载石墨烯去耦网络的微带阵列天线的立体结构示意图。图2为图1的俯视图。图3为石墨烯偏压加载方式示意图。图4为基于石墨烯去耦的阵列天线的S参数仿真数据图。图5为加载与未加载石墨烯远场方向仿真对比图;其中(a)为E面、(b)为H面。图中标号:1、介质板;2、石墨烯;3、二氧化硅基底;4、单晶硅衬底;5、天线阵列单元;5-1、馈线;5-2、阻抗匹配器;5-3、辐射贴片;6、金属地板。具体实施方式一种加载石墨烯2去耦网络的微带阵列天线,如图1和2所示,由介质板1、金属地板6、以及2个以上的相互独立的天线阵列单元5组成。金属地板6和天线阵列单元5可以位于介质板1的同一侧表面上,也可以位于介质板1的不同侧表面上。在本技术优选实施例中,金属地板6位于介质板1的下表面,所有天线阵列单元5均位于介质板1的上表面。介质板1作为阵列天线的介质板1,长×宽×厚为160mm×95mm×0.8mm,相对介电常数为4.4,损耗角正切为0.02。介质板1边缘距辐射贴片5-3边缘距离略大于四分之一波长,使得辐射贴片5-3与金属地板6的良好作用,保证天线辐射性能。天线阵列单元5为印刷在介质板1上的金属结构层,所有天线阵列单元5的结构相同,相互之间存在一定的间距。天线阵列单元5的尺寸是由介质板1介电常数、损耗角正切、厚度和天线工作频率决定。在本技术优选实施例中,每个天线阵列单元5均由辐射贴片5-3、阻抗匹配器5-2和馈线5-1组成。辐射贴片5-3经由阻抗匹配器5-2与馈线5-1连接,阻抗转换器使得微带天线边缘阻抗与馈线5-1端口输入阻抗达成匹配,以良好馈电。辐射贴片5-3需覆于在介质板1的表面上,而阻抗匹配器5-2和馈线5-1可以采用外接的形式(比如背馈或底馈),也可以采用覆于在介质板1表面的形式。在本技术优选实施例中,阻抗匹配器5-2和馈线5-1也覆于介质板1表面上,即为微带馈电。去耦网络是位于两辐射贴片之间进行电磁波的抑制,不受于馈电形式的限制金属地板6为印刷于介质板1上的覆盖金属层。在本技术优选实施例中,金属地板6全覆盖于介质板1的下表面。金属地板6与天线阵列单元5的辐射贴片5-3相互作用,两者共同构成双线结构,保证天线的正常工作。为了在有限的尺寸内减小天线阵列单元5之间的相互影响,本技术在2个相邻的天线阵列单元5之间增设石墨烯2层来构建去耦网络。石墨烯2层与天线阵列单元5之间存在一定的间隙。石墨烯2层可以直接覆盖在介质板1上,也可以通过一二氧化硅基底3和单晶硅衬底4覆于介质板1上。在本技术优选实施例中,石墨烯2附于尺寸相同的二氧化硅基片上,石墨烯2层位于二氧化硅基底3的上表面,二氧化硅基底3的下表面与相同尺寸的单晶硅衬底4上表面相贴,单晶硅衬底4与介质板1的上表面相贴。石墨烯2层附着在二氧化硅基底3上并贴在单晶硅衬底4上作为一个整体,置于天线阵列单元5辐射贴片5-3之间,紧贴在介质板1上。在本技术优选实施例中,二氧化硅基底3的厚度为200nm,相对介电常数为3.9,单晶硅衬底4厚度为9.5um,相对介电常数为11.9。二氧化硅基底3和单晶硅衬底4厚度会影响石墨烯2去耦的频率范围。石墨烯2层是附着于二氧化硅基底3的厚度视为0的阻抗型表面。由于石墨烯2可以通过外置偏压进行调控,不同偏压下的石墨烯2呈不同的电导率,从而调控表面电磁波在石墨烯2表面的传输特性。在某些特定的偏置电压下,表面波被完全截止。因此,本技术将石墨烯2层与一外置直流偏置电压相连接,通过给石墨烯2施加直流偏置电压,调整偏置电压,以控制石墨烯2对表面电磁波的传输和截止特性,从而极大程度地抑制了相邻天线阵列单元5间的电磁互耦,从而达到去耦目的。外置直流偏置电压可以采用直接加载的形式,也可以如本技术优选实施例所述,将外置直流偏置电压的一端与石墨烯2层连接,外置直流偏置电压的另一端与单晶硅衬底4连接。参见图3。参见图1,在Y方向石墨烯2边缘加载电极,以便对石墨烯2加偏置电压,进而控制石墨烯2的费米能级,进一步控制石墨烯2的表面阻抗,抑制表面波的传输,最终实现电磁互耦的抑制。且石墨烯2的长(Y方向)与宽(X方向)对电磁波的去耦效果与去耦频段会产生一定影响。通过对石墨烯2尺寸与偏压进行优化分析,使加载石墨烯2的天线阵列在工作频段内,S11与S21都尽可能小。本技术利用石墨烯2极大限度地降低了因阵元间间距太小而引起的电磁耦合效应。从而极大限度地降低甚至消除了每个阵元的辐射特性受相邻阵元的影响,最终实现阵列天线的紧凑型结构。将石墨烯2看作电导率表面,其电导率由Kubo公式得到,由带内电导率和带间电导率构成:σs=σintr本文档来自技高网...

【技术保护点】
加载石墨烯(2)去耦网络的微带阵列天线,包括介质板(1)、以及覆于介质板(1)表面的金属地板(6)和2个以上的相互独立的天线阵列单元(5);其特征在于:2个相邻的天线阵列单元(5)之间设有石墨烯(2)层;该石墨烯(2)层覆于介质板(1)上,且与天线阵列单元(5)之间存在一定的间隙;石墨烯(2)层与一外置直流偏置电压相连接。

【技术特征摘要】
1.加载石墨烯(2)去耦网络的微带阵列天线,包括介质板(1)、以及覆于介质板(1)表面的金属地板(6)和2个以上的相互独立的天线阵列单元(5);其特征在于:2个相邻的天线阵列单元(5)之间设有石墨烯(2)层;该石墨烯(2)层覆于介质板(1)上,且与天线阵列单元(5)之间存在一定的间隙;石墨烯(2)层与一外置直流偏置电压相连接。2.根据权利要求1所述的加载石墨烯(2)去耦网络的微带阵列天线,其特征在于:石墨烯(2)层通过一二氧化硅基底(3)和单晶硅衬底(4)覆于介质板(1)上;其中石墨烯(2)层的下表面与二氧化硅基底(3)的上表面相贴,二氧化硅基底(3)的下表面与单晶硅衬底(4)的上表面相贴,单晶硅衬底(4)的下表面与介质板(1)的上表面相贴。3.根据权利要求2所述的加载石墨烯(2)去耦网络的微带阵列天线,其特征在于:外置直流偏置电压的一端与石墨...

【专利技术属性】
技术研发人员:高喜乔玮杨万里李思敏曹卫平姜彦南于新华
申请(专利权)人:桂林电子科技大学
类型:新型
国别省市:广西;45

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1