基于CUDA技术的具有标尺的固液界面电极过程分析系统技术方案

技术编号:14146200 阅读:43 留言:0更新日期:2016-12-11 02:27
基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:包括电解装置、控制系统、摄像装置;电解装置还包括进液阀(F4)、进液阀(F4);电解装置还包括标尺(2);标尺(2)的尺度延展方向与第二容器(12)的轴向方向相同;控制系统的控制模块中具有CUDA处理硬件单元。本发明专利技术成本低廉、应用灵活、使用寿命长、不易损坏、稳定可靠、分析快速可靠。

【技术实现步骤摘要】

本专利技术属于电学领域,具体涉及基于CUDA技术的具有标尺的固液界面电极过程分析系统
技术介绍
使用固态电极的液体电解过程中,电极表面附近的气泡的上升、合并,容易影响到电极表面与液体的接触,影响液体中离子的运动,导致电极表面与液体的接触面积减小导致电解效率瓶颈的产生,科研人员研究此过程有利于突破电解效率瓶颈。使用固态电极的液体电解过程中,电极表面附近的气泡的合并和爆裂,容易在局部高温和强大的冲击力,导致固态电极遭受腐蚀,影响电极的寿命,科研人员研究此过程有利于研发相对现有电解电极更长寿的电解电极。科研人员在分析固态电极电解液体是电极的表面(即固液界面)的状态时存在诸多不便;如果存在一种能够实现对电极过程进行全自动分析的系统,则能够提高科研人员对电解电极的研发效率。
技术实现思路
为解决技术背景中叙述的问题,本专利技术提出了基于CUDA技术的具有标尺的固液界面电极过程分析系统,本专利技术系统能够实现电极过程的全自动分析,提高科研效率。本专利技术具有如下
技术实现思路
。1、基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:包括电解装置、控制系统、摄像装置;电解装置包括:平衡容器(10)、第一容器(11)、第二容器(12)、第一排空管(110)、第二排空管(120)、第一排空阀(F1)、第二排空阀(F2)、第一电极(DJ1)、第二电极(DJ2);电解装置中:平衡容器(10)为柱状,平衡容器(10)的上端开口;电解装置中:第一容器(11)为柱状,第一容器(11)的上端与第一排空管(110)相通;电解装置中:第二容器(12)为柱状,第二容器(12)的上端与第二排空管(120)相通;电解装置中:平衡容器(10)、第一容器(11)、第二容器(12)底部相通;电解装置中: 第一排空阀(F1)位于第一排空管(110)的管路上,第一排空阀(F1)能够控制第一排空管(110)的通断情况;电解装置中:第二排空阀(F2)位于第二排空管(120)的管路上,第二排空阀(F2)能够控制第二排空管(120)的通断情况;电解装置中:第一电极(DJ1)位于第一容器(11)内;第二电极(DJ2)位于第二容器(12)内。电解装置还包括进液阀(F4)、进液阀(F4);进液阀(F4)位于进液管(14)的管路上,进液管(14)内的液体能够流入到平衡容器(10)中。电解装置还包括排液阀(F3);排液阀(F3)安装在一端与平衡容器(10)相通一端与外部相通的管道上,排液阀(F3)用于排泄液体,排液阀(F3)的液平高度低于第一容器(11)的容腔的最上端。电解装置还包括标尺(2);标尺(2)的尺度延展方向与第二容器(12)的轴向方向相同。控制系统包括控制模块、程控电源,控制模块与程控电源相直接具有电学连接,控制模块能够控制程控电源;摄像装置与控制系统之间具有电学连接,摄像装置能够向控制模块传输影像数据,摄像装置的镜头拍摄为第一容器(11)、第二容器(12)的径向方向,摄像装置能够拍摄第一容器(11)内的影像。控制系统的控制模块与第一排空阀(F1)之间具有电学连接,控制系统的控制模块能够控制第一排空阀(F1);控制系统的控制模块与第二排空阀(F2)之间具有电学连接,控制系统的控制模块能够控制第二排空阀(F2)。控制系统的控制模块还与排液阀(F3)之间具有电学连接,控制系统的控制模块能够控制排液阀(F3);控制系统的控制模块与进液阀(F4)之间具有电学连接,控制系统的控制模块能够控制进液阀(F4)。控制系统的控制模块中具有CUDA处理硬件单元;2、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:平衡容器(10)使用玻璃制成。3、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:电解装置的第一容器(11)使用玻璃制成。4、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:电解装置的第二容器(12)使用玻璃制成。5、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:电解装置的第一排空阀(F1)为电磁阀。6、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:电解装置的标尺(2)的刻度为金属制成。7、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:电解装置的排液阀(F3)为电磁阀。8、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:控制系统包括一台具有CUDA处理硬件的显卡的计算机。9、如
技术实现思路
1所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:控制系统包括一个单片机。10、如
技术实现思路
9所述的基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:所述的单片机为C51单片机。
技术实现思路
说明及其有益效果。本专利技术成本低廉、应用灵活、使用寿命长、不易损坏、稳定可靠、分析快速可靠。附图说明图1、2、3为实施实例1的电解装置的示意图;图1的为顶部视图,图2为放射光线或射线的设备3的侧视图设备3发射的光线或射线穿过平衡容器(10)、第一容器(11)、第二容器(12)中至少一个容器用于摄像头4的成像;图3为实施实例1的侧向视图其中画出了控制系统,这是是为了直观的体现连接关系。图4为实施实例1的操作流程的示意图。图5、6为实施实例1的辅助‘电极分析算法’解说的抽象表述示意图。图7为实施实例1的制氢发电模块的示意图。图8为实施实例4的电解装置的示意图。具体实施实例下面将结合实施实例对本专利技术进行说明。实施实例1、如图1-7所示基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:包括电解装置、控制系统、制氢发电模块、摄像装置;电解装置包括:平衡容器(10)、第一容器(11)、第二容器(12)、第一排空管(110)、第二排空管(120)、第一排空阀(F1)、第二排空阀(F2)、第一电极(DJ1)、第二电极(DJ2);电解装置中:平衡容器(10)为柱状,平衡容器(10)的上端开口;电解装置中:第一容器(11)为柱状,第一容器(11)的上端与第一排空管(110)相通;电解装置中:第二容器(12)为柱状,第二容器(12)的上端与第二排空管(120)相通;电解装置中:平衡容器(10)、第一容器(11)、第二容器(12)底部相通;电解装置中: 第一排空阀(F1)位于第一排空管(110)的管路上,第一排空阀(F1)能够控制第一排空管(110)的通断情况;电解装置中:第二排空阀(F2)位于第二排空管(120)的管路上,第二排空阀(F2)能够控制第二排空管(120)的通断情况;电解装置中:第一电极(DJ1)位于第一容器(11)内;第二电极(DJ2)位于第二容器(12)内。电解装置还包括进液阀(F4)、进液阀(F4);进液阀(F4)位于进液管(14)的管路上,进液管(14)内的液体能够流入到平衡容器(10)中。电解装置还包括排液阀(F3);排液阀(F3)安装在一端与平衡容器(10)相通一端与外部相通的管道上,排液阀(F3)用于排泄液体,排液阀(F3)的液平高度低于第一容器(11)的容腔的最上端。电解装置还包括标尺(2本文档来自技高网
...
基于CUDA技术的具有标尺的固液界面电极过程分析系统

【技术保护点】
基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:包括电解装置、控制系统、摄像装置;电解装置包括:平衡容器(10)、第一容器(11)、第二容器(12)、第一排空管(110)、第二排空管(120)、第一排空阀(F1)、第二排空阀(F2)、第一电极(DJ1)、第二电极(DJ2);电解装置中:平衡容器(10)为柱状,平衡容器(10)的上端开口;电解装置中:第一容器(11)为柱状,第一容器(11)的上端与第一排空管(110)相通;电解装置中:第二容器(12)为柱状,第二容器(12)的上端与第二排空管(120)相通;电解装置中:平衡容器(10)、第一容器(11)、第二容器(12)底部相通;电解装置中: 第一排空阀(F1)位于第一排空管(110)的管路上,第一排空阀(F1)能够控制第一排空管(110)的通断情况;电解装置中:第二排空阀(F2)位于第二排空管(120)的管路上,第二排空阀(F2)能够控制第二排空管(120)的通断情况;电解装置中:第一电极(DJ1)位于第一容器(11)内;第二电极(DJ2)位于第二容器(12)内;电解装置还包括进液阀(F4)、进液阀(F4);进液阀(F4)位于进液管(14)的管路上,进液管(14)内的液体能够流入到平衡容器(10)中;电解装置还包括排液阀(F3);排液阀(F3)安装在一端与平衡容器(10)相通一端与外部相通的管道上,排液阀(F3)用于排泄液体,排液阀(F3)的液平高度低于第一容器(11)的容腔的最上端;电解装置还包括标尺(2);标尺(2)的尺度延展方向与第二容器(12)的轴向方向相同;控制系统包括控制模块、程控电源,控制模块与程控电源相直接具有电学连接,控制模块能够控制程控电源;摄像装置与控制系统之间具有电学连接,摄像装置能够向控制模块传输影像数据,摄像装置的镜头拍摄为第一容器(11)、第二容器(12)的径向方向,摄像装置能够拍摄第一容器(11)内的影像;控制系统的控制模块与第一排空阀(F1)之间具有电学连接,控制系统的控制模块能够控制第一排空阀(F1);控制系统的控制模块与第二排空阀(F2)之间具有电学连接,控制系统的控制模块能够控制第二排空阀(F2);控制系统的控制模块还与排液阀(F3)之间具有电学连接,控制系统的控制模块能够控制排液阀(F3);控制系统的控制模块与进液阀(F4)之间具有电学连接,控制系统的控制模块能够控制进液阀(F4);控制系统的控制模块中具有CUDA处理硬件单元。...

【技术特征摘要】
1.基于CUDA技术的具有标尺的固液界面电极过程分析系统,其特征在于:包括电解装置、控制系统、摄像装置;电解装置包括:平衡容器(10)、第一容器(11)、第二容器(12)、第一排空管(110)、第二排空管(120)、第一排空阀(F1)、第二排空阀(F2)、第一电极(DJ1)、第二电极(DJ2);电解装置中:平衡容器(10)为柱状,平衡容器(10)的上端开口;电解装置中:第一容器(11)为柱状,第一容器(11)的上端与第一排空管(110)相通;电解装置中:第二容器(12)为柱状,第二容器(12)的上端与第二排空管(120)相通;电解装置中:平衡容器(10)、第一容器(11)、第二容器(12)底部相通;电解装置中: 第一排空阀(F1)位于第一排空管(110)的管路上,第一排空阀(F1)能够控制第一排空管(110)的通断情况;电解装置中:第二排空阀(F2)位于第二排空管(120)的管路上,第二排空阀(F2)能够控制第二排空管(120)的通断情况;电解装置中:第一电极(DJ1)位于第一容器(11)内;第二电极(DJ2)位于第二容器(12)内;电解装置还包括进液阀(F4)、进液阀(F4);进液阀(F4)位于进液管(14)的管路上,进液管(14)内的液体能够流入到平衡容器(10)中;电解装置还包括排液阀(F3);排液阀(F3)安装在一端与平衡容器(10)相通一端与外部相通的管道上,排液阀(F3)用于排泄液体,排液阀(F3)的液平高度低于第一容器(11)的容腔的最上端;电解装置还包括标尺(2);标尺(2)的尺度延展方向与第二容器(12)的轴向方向相同;控制系统包括控制模块、程控电源,控制模块与程控电源相直接具有电学连接,控制模块能够控制程控电源;摄像装置与控制系统之间具有电学连接,摄像装置能够向控制模块传输影像数据,摄像装置的镜头拍摄为第一容器(11)、第二容器(12)的径向方向,摄...

【专利技术属性】
技术研发人员:聂新明田亚平袁博宇王超李亮赵新生
申请(专利权)人:江苏师范大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1