小型高产额氘氘中子发生器制造技术

技术编号:11017218 阅读:99 留言:0更新日期:2015-02-11 08:18
本实用新型专利技术公开了一种小型高产额氘氘中子发生器。采用模块化分布式高频离子源,在端部为球面的陶瓷圆柱体外表面上均匀分布,输出分布均匀、流强大于1A、单原子比例超过80%氘离子束,在端部为球面的柱形的加速电场中加速,轰击位于高电位端的端部为球面的柱形金属或陶瓷自成靶,发生氘/氘反应,产生2.45MeV中子。模块化分布式高频离子源数量和自成靶的面积不受限制,氘氘反应的中子产额超过1011n/s,且无任何放射性污染物排放。适合商业化应用,如:硼中子俘获治疗、中子照相、在线物料成分中子检测、中子辐照改性以及作为锎中子源替代产品等领域。

【技术实现步骤摘要】
【专利摘要】本技术公开了一种小型高产额氘氘中子发生器。采用模块化分布式高频离子源,在端部为球面的陶瓷圆柱体外表面上均匀分布,输出分布均匀、流强大于1A、单原子比例超过80%氘离子束,在端部为球面的柱形的加速电场中加速,轰击位于高电位端的端部为球面的柱形金属或陶瓷自成靶,发生氘/氘反应,产生2.45MeV中子。模块化分布式高频离子源数量和自成靶的面积不受限制,氘氘反应的中子产额超过1011n/s,且无任何放射性污染物排放。适合商业化应用,如:硼中子俘获治疗、中子照相、在线物料成分中子检测、中子辐照改性以及作为锎中子源替代产品等领域。【专利说明】小型高产额氘氘中子发生器
本技术涉及核技术及应用领域,尤其涉及一种小型的加速器氘氘中子发生器。
技术介绍
小型中子源一般分为放射源中子源和加速器中子源,放射源中子源是利用放射性核素来产生中子,产额较低,寿命短。加速器中子源产额高,关断电源后没有中子产生,使用方便,可控性好,安全性较高。 加速器中子源是利用离子源产生的氘离子,经过加速电场的加速,获得较高的能量,在祀上发生氣/氣或者氣/氣聚变反应,在4 π方向上放出中子。 虽然氘/氚聚变反应截面更大,产额更高,但是氚是一种放射性物质,属于严格管控的核材料,国家对于其使用及排放都有极其严格的要求,因此氚的使用和排放处理成本很高。而采用氘/氘中子发生器则没有这些管控要求;氘的价格也非常便宜,只有氚的几万分之一。但是氣/氣聚变反应截面小,在小型氣氣中子发生器能量范围70?300keV之间,产额比氣/氣反应低2个量级。 提升中子产额的途径:增加注入离子束的能量和流强,另外一个就是提高离子束中单原子离子的比例,因为同样加速电压下,分子离子中的原子能量比原子离子的能量低一倍,相应的中子产额低5倍左右。 单纯地提升离子束能量,带来的问题比较多,绝缘结构复杂,可靠性低,成本高。在小型加速器中子源中,一般将加速电压控制在300kV范围内。因此,增加离子束的束流强度和提高离子束中单原子离子的比例是提升中子产额的有效途径。 离子束轰击靶时产生很高的能量沉积,即使在通水冷却的条件下,靶上能够承受的热功率密度也必须控制在一个合理的范围。目前通常采用三种方式提升靶承受热功率的能力:一是加大离子束束斑直径,这种方法的优点是靶上可以承受更多的离子束注入,总的中子产额增加,这种方法的缺点是中子源的点源特性变差,准直比降低,这在很多应用领域都是不利的,比如:快中子照相、中子治疗、爆炸物检测等。二是中国专利CN203057673U(【公开日】为2013年1月27日)公开了一种采用旋转靶方式增加靶面积的方法,该方法的优点是可以在不增加束斑尺寸的条件下,提升靶承受沉积功率的能力,进而提升中子产额和通量,该方法的缺点是结构复杂,体积庞大,有运动机构,可靠性稍差,成本较高;三是中国专利CN201010238639.5(【公开日】为2010年7月28日)公开了一种采用气体靶的方法,该方法的优点是无固定靶,产额高,靶寿命长,该方法的缺点是技术难度高,真空系统体积庞大,能耗高,造价高。上述三种方法,缺少增加离子束强度的空间,在进一步需要提升中子产额时,离子源引出的离子束强度不足将成为制约产额提升的瓶颈。
技术实现思路
本技术所要解决的技术问题是提供一种小型高产额氘氘中子发生器,解决目前氘氘中子发生器产额低,体积大,结构复杂等问题。 为解决上述技术问题,本技术提供一种小型高产额氘氘中子发生器,包括高频离子源、柱形陶瓷外壳、自成靶及靶屏蔽极;所述高频离子源包括若干小型天线模块和若干引出极,所述天线模块均匀分布安装在所述陶瓷外壳外部表面,所述引出极沿陶瓷外壳在壳体内部分布安装; 所述陶瓷外壳内为真空室,所述真空室通过氘气补充阀门及管道连接外部氘气补充装置;陶瓷外壳用于隔离真空系统和大气,并能让天线产生的高频电磁场顺利进入真空系统。 所述柱形自成靶及靶屏蔽极安装在所述陶瓷外壳内,所述靶屏蔽极罩在自成靶上,所述靶屏蔽极上设有开孔; 所述引出极与自成靶之间存在引出、加速、聚焦的电场,所述高频离子源在陶瓷外壳内部真空一侧产生高密度氘等离子体,所述引出极引出氘离子束,通过电场加速后、穿过所述靶屏蔽极上的开孔,轰击所述柱形自成靶,所述柱形自成靶输出高产额能量为2.45MeV中子。引出离子束分布可调节,均匀性好,结构简单,可靠性高。 优选的,所述真空室的气压为0.1?IPa。最优选的,所述真空室的气压为0.5Pa。 优选的,所述柱形自成靶及靶屏蔽极连接外部高压电源,所述柱形自成靶及靶屏蔽极通过高压绝缘支座安装在所述陶瓷外壳内;相对柱形自成靶及靶屏蔽极,所述引出极位于地电位。 更优选的,所述柱形自成靶包括自成靶本体和内部冷却油通道,所述内部冷却油通道位于所述自成靶本体内,所述内部冷却油通道分别与冷却油入口、冷却油出口管道相连接。 本技术所述小型高产额氘氘中子发生器还包括高电压转接装置,所述高电压转接装置内充满绝缘油,所述柱形自成靶通过高压电缆及高压插头连接所述外部高压电源,所述高压插头、冷却油入口、冷却油出口管道均浸没在所述绝缘油中。油循环冷却管路由绝缘材料制成,跨接高电位与地电位,管内外绝缘性能满足高电压绝缘的要求。 可选的,所述高电压转接装置内充满高压绝缘气体,所述柱形自成靶通过高压电缆及高压插头连接所述外部高压电源,所述高压插头、冷却油入口、冷却油出口管道均处于所述绝缘气体中。绝缘气体如N2或者SF6等。 所述小型高产额氘氘中子发生器还包括外部真空系统,所述外部真空系统包括真空泵,真空测量仪及真空管道,所述真空室通过真空管道连接所述真空泵。通过所述外部真空系统以及外部氘气补充装置,保持真空外壳内部真空度及氘气量在合适的范围内。 所述靶屏蔽极与所述柱形自成靶之间存在电位差,用于抑制靶上产生的二次电子进入加速段,降低电源负载,保护离子源免于反向电子束的轰击。 优选的,所述柱形自成靶为圆柱体或多面柱体结构。 优选的,所述柱形陶瓷外壳的端部为球面,且所述柱形自成靶的端部为球面。发生器内部空间不变的条件下,靶面积变大,有效提高空间利用率。如果采用普通的柱形结构,为降低表面电场强度,也需要将端部倒成大曲率半径的圆角,因而并不能减小发生器外部尺寸。 同样优选的,所述模块化分布式高频离子源的数量为任意多个,沿所述端部为球面的柱形陶瓷外壳外表面放置,只要面积足够大,数量不受限制,因此,输出氘离子束的强度不受限制;靶上对应位置为轰击区域,面积不受限制。 所述小型天线模块呈圆形或矩形绕制在柱形陶瓷外壳外表面上。 通过同步增加柱形陶瓷外壳和柱形自成靶的直径,或通过增加长度的方式,成正比地增加柱形陶瓷外壳及柱形自成靶的表面积,相应的中子产额大幅度增加。 根据需要改变所述高频离子源的位置,相应地改变氘离子束引出束流的分布,得到所需分布形状和密度的分布式氘离子束。 本技术的有益效果是:氘氘反应的中子产额超过1011n/s,中子产额比普通氘氘中子发生器高出几千倍,且体积小,结构简单,在实际应用时,中子照射时间可以缩短几百倍。原来需要照射几十个小时的,现在只需要照射几分钟,比如:中子照相、中子治疗、中子本文档来自技高网
...

【技术保护点】
一种小型高产额氘氘中子发生器,其特征在于,包括高频离子源、柱形陶瓷外壳、柱形自成靶及靶屏蔽极;所述高频离子源包括若干小型天线模块和若干引出极,所述小型天线模块均匀分布安装在所述柱形陶瓷外壳外部表面,所述引出极沿所述柱形陶瓷外壳在壳体内部分布安装;所述柱形陶瓷外壳内为真空室,所述真空室通过氘气补充阀门及管道连接外部氘气补充装置;所述柱形自成靶及靶屏蔽极安装在所述柱形陶瓷外壳内,所述靶屏蔽极罩在所述柱形自成靶上,所述靶屏蔽极上设有开孔;所述引出极与所述柱形自成靶之间存在引出、加速、聚焦的电场,所述高频离子源在所述柱形陶瓷外壳内部真空一侧产生高密度氘等离子体,所述引出极引出氘离子束通过电场加速后、穿过所述靶屏蔽极上的开孔,轰击所述柱形自成靶,所述柱形自成靶输出高产额能量为2.45MeV中子。

【技术特征摘要】

【专利技术属性】
技术研发人员:何小海唐君李彦娄本超张钦龙刘百力刘湾黄瑾李艳
申请(专利权)人:中国工程物理研究院核物理与化学研究所
类型:新型
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1