电动汽车主动平衡式胶体电池管理系统技术方案

技术编号:9745729 阅读:222 留言:0更新日期:2014-03-07 21:54
一种电动汽车主动平衡式胶体电池管理系统,属于汽车用电池控制装置领域。包括BMS系统的主控单元,其特征在于:主控单元的数据端设置连接显示单元,主控单元的电源端连接胶体电池组,胶体电池组内部的若干胶体电池分别设置采集单元和均衡单元,采集单元和均衡单元分别通过CAN总线连接主控单元的数据端。采用胶体电池的本管理系统,采集单元对电动汽车的胶体电池组的电池参数进行实时监控,然后通过主控单元进行故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器或充电机进行信息交互,保证电源输出稳定,延长使用寿命,更能够保障电动汽车高效、可靠、安全运行。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
电动汽车主动平衡式胶体电池管理系统
本技术提供一种电动汽车主动平衡式胶体电池管理系统,属于汽车用电池控制装置领域。
技术介绍
由于电池在制造过程中很难确保具有完全的均一性,各串联的电池单元之间会存在充电或放电特性的差异。因此,当使用串联电池单元的电池组时,会存在这样的问题:充电时,同一电池组中,即使某些电池单元被过度充电,也仍然存在某些电池单元尚未达到饱和;又或放电时,同一电池组中,有些电池单元尚未完全放电,但仍有些电池单元被过度放电。此外,如果电池单元长期被过度放电/充电,在构成电池单元的材料中可能会出现显著劣化,使得电池单元的特性变得不同,而这种劣化是加剧电池单元间差异的原因之一。电池管理系统BMS能够连续监控和管理电池组内电池芯的充电、放电、温度,以及提供程序的接口。车辆是一种运行工况极其复杂的设备,同时又具有搭载乘客的安全要求,因而电池应用于车辆上必须考虑高压安全、可靠、舒适等多种要求。目前国内汽车级蓄电池供电受到工艺及材料性能的限制,轿车用动力电池组电压较低,控制不稳定,要获得高电压必须依赖于电池成组技术。
技术实现思路
根据以上现有技术中的不足,本技术目的在于提供一种设置功率高,输出稳定,安全可靠,使用寿命长的电动汽车主动平衡式胶体电池管理系统。本技术的上述技术目的主要是通过以下技术方案解决的:一种电动汽车主动平衡式胶体电池管理系统,包括BMS系统的主控单元,其特征在于:主控单元的数据端设置连接显示单元,主控单元的电源端连接胶体电池组,胶体电池组内部的若干胶体电池分别设置采集单元和均衡单元,采集单元和均衡单元分别通过CAN总线连接主控单元的数据端。采集单元对电动汽车的胶体电池组的电池参数进行实时监控,然后通过主控单元进行故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器或充电机进行信息交互,保证电源输出稳定,延长使用寿命,保障电动汽车高效、可靠、安全运行。主控单元完成对胶体电池组总电压、总电流的检测,并通过CAN总线与采集单元、均衡模块、显示单元或车载仪表系统及充电机等通信。其中优选方案是:所述的采集单元包括2-20个电压采集装置、2-6个温度传感器和风扇,电压采集装置和温度传感器分别与胶体电池相适应。全面采集整个胶体电池组内各个电池的状态参数,并且与均衡单元配合,使得某一电池电压不一致超过规定值时,自动对电池进行均衡。风扇可以设置在温升较大的位置,保护胶体电池和BMS。每个采集单元可测量20节电池端电压及6个测量点温度和I路风扇控制,安装在每个电池箱内。当电池箱内电池电压不一致超过规定值时,在充电电流小于一定值后,均衡单元可自动对电池进行均衡。所述的采集单元包括控制器、模数转换器、温度转换器和CAN收发器,控制器的数据端连接分别连接模数转换器和温度转换器,控制器的通讯端通过光耦隔离器连接CAN收发器,采用差分输入,控制器采用集成了 CAN控制器模块的dsPIC30F系列芯片,CAN收发器选用MCP2551,模数转换器采用DS18B20。所述的主控单元的SOC估算其根据电动汽车的行驶,静置和充电的三种工作状态,,分别采用安时法、开路电压法进行SOC估计,在采用安时法的基础上,采用加权安时法进行SOC校正,消除安时法带来的累计误差,保证SOC精度在8%以内。所述的显示单元为触摸屏,采用SAM9263B为主芯片的ARM9方案。用于胶体电池组的状态以及SOC等各种参数的显示、操作设置等。所述的胶体电池组设置充电机接口。所述的主控单元设置存储装置。用于存贮各种运行数据,保证可查询历史数据,便于调整和维修。本技术具有的有益效果是,通过在主控单元的电源端连接胶体电池组,胶体电池组内部的若干胶体电池分别设置采集单元和均衡单元,采集单元和均衡单元分别通过CAN总线连接主控单元的数据端,采集单元对电动汽车的胶体电池组的电池参数进行实时监控,然后通过主控单元进行故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器或充电机进行信息交互,保证电源输出稳定,延长使用寿命,保障电动汽车高效、可靠、安全运行。通过整体设计优化,技术满足保证电池运行安全。实现:1、实时跟踪电池运行状态及参数检测:实时采集电池充放电状态,采集数据有电池总电压,电池总电流,每个电池箱内电池测点温度以及单体模块电池电压等。由于动力电池都是串联使用的,所以这些参数的实时,快速,准确的测量是电池管理系统正常运行的基础。2、剩余电量估算:电池剩余能量相当于传统车的油量。荷电状态(SOC)的估算是了为了让司机及时了解系统运行状况。实时采集充放电电流、电压等参数,并通过相应的算法进行剩余电量的估计。3、充放电控制:根据电池的荷电状态控制对电池的充放电,当某个参数超标如单体电池电压过高或过低时,为保证电池组的正常使用及性能的发挥,系统将自动调整充放电电流,首先给低电压电池充电或高电压电池放电至均衡以后,再给整个电池系统充电或放电,保护电池。【附图说明】图一是本技术的原理方框图;【具体实施方式】下面通过实施例,结合附图,对本技术的技术方案作进一步的说明。实施例1:如图1所示,主控单元的数据端设置连接显示单元,主控单元的电源端连接胶体电池组,胶体电池组内部的若干胶体电池分别设置采集单元和均衡单元,采集单元和均衡单元分别通过CAN总线连接主控单元的数据端;采集单元对电动汽车的胶体电池组的电池参数进行实时监控,然后通过主控单元进行故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器进行信息交互。采集单元和均衡单元一对一分别设置在胶体电池组的各个电池内。采集单元包括2-20个电压采集装置、2-6个温度传感器和风扇,电压采集装置和温度传感器分别与胶体电池相适应。全面采集整个胶体电池组内各个电池的状态参数,并且与均衡单元配合,使得某一电池电压不一致超过规定值时,自动对电池进行均衡。风扇可以设置在温升较大的位置,保护胶体电池和BMS。CAN通讯接口电路,采用瞬变电压抑制二极管和自恢复保险丝组成保护电路,并加入共模电感提高抗干扰能力。根据需要,胶体电池组设置充电机接口。主控单元设置存储装置。用于存贮各种运行数据,保证可查询历史数据,便于调整和维修。实施例2:在实施例1的基础上,采集单元包括控制器、模数转换器、温度转换器和CAN收发器,控制器的数据端连接分别连接模数转换器和温度转换器,控制器的通讯端通过光耦隔离器连接CAN收发器,采用差分输入。采集单元主要参数:·供电电源:DC96V±30%电压测量范围及精度:0_+5V,( ±0.2%最大检测周期:< 0.2S检测电池只数:23节温度检测路数及精度:6路,≤± I °C风扇控制:I路(可驱动DC24V/0.15A风扇6个)通信口: I 路 CAN,I 路 232运行温度:-25°C-+7O °C控制器选用集成了 CAN控制器模块的dsPIC30F系列芯片;CAN收发器选用MCP2551,通过CAN总线与其他控制系统进行通信;电池电压采样选用12位精度的ADS78本文档来自技高网...

【技术保护点】
一种电动汽车主动平衡式胶体电池管理系统,包括BMS系统的主控单元,其特征在于:主控单元的数据端设置连接显示单元,主控单元的电源端连接胶体电池组,胶体电池组内部的若干胶体电池分别设置采集单元和均衡单元,采集单元和均衡单元分别通过CAN总线连接主控单元的数据端。

【技术特征摘要】
1.一种电动汽车主动平衡式胶体电池管理系统,包括BMS系统的主控单元,其特征在于:主控单元的数据端设置连接显示单元,主控单元的电源端连接胶体电池组,胶体电池组内部的若干胶体电池分别设置采集单元和均衡单元,采集单元和均衡单元分别通过CAN总线连接主控单元的数据端。2.根据权利要求1所述的电动汽车主动平衡式胶体电池管理系统,其特征在于:所述的采集单元包括2-20个电压采集装置、2-6个温度传感器和风扇,电压采集装置和温度传感器分别与胶体电池相适应。3.根据权利要求2所述的电动汽车主动平衡式胶体电池管理系统,其特征在于:所述的采集单元包括控制器、模数转换器、温度转换...

【专利技术属性】
技术研发人员:石光峰郭源生董义鹏李明贤
申请(专利权)人:淄博京科电气研究所
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1