基于李雅普诺夫指数变化的光伏发电孤岛检测装置制造方法及图纸

技术编号:9584185 阅读:72 留言:0更新日期:2014-01-16 12:23
本实用新型专利技术公开一种基于李雅普诺夫指数变化的光伏发电孤岛检测装置,主要由混沌检测模块、数字锁相环模块、最大功率点跟踪模块、乘法器、同步控制模块和IGBT驱动模块组成;其中混沌检测模块的输入端和数字锁相环模块的输入端同时连接在光伏并网发电系统的公共连接点处,数字锁相环模块的输出端和最大功率点跟踪模块的输出端分别连接在乘法器的2个输入端上,乘法器的输出端和混沌检测模块的输出端分别接入同步控制模块的2个输入端,同步控制模块的输出端经IGBT驱动模块与光伏电池板阵列输出端处的DC/AC转换模块相连。本实用新型专利技术具有可靠、有效、高灵敏度、且智能化的特点。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
【专利摘要】本技术公开一种基于李雅普诺夫指数变化的光伏发电孤岛检测装置,主要由混沌检测模块、数字锁相环模块、最大功率点跟踪模块、乘法器、同步控制模块和IGBT驱动模块组成;其中混沌检测模块的输入端和数字锁相环模块的输入端同时连接在光伏并网发电系统的公共连接点处,数字锁相环模块的输出端和最大功率点跟踪模块的输出端分别连接在乘法器的2个输入端上,乘法器的输出端和混沌检测模块的输出端分别接入同步控制模块的2个输入端,同步控制模块的输出端经IGBT驱动模块与光伏电池板阵列输出端处的DC/AC转换模块相连。本技术具有可靠、有效、高灵敏度、且智能化的特点。【专利说明】基于李雅普诺夫指数变化的光伏发电孤岛检测装置
本技术设计光伏发电领域,具体涉及一种基于李雅普诺夫指数变化的光伏发电孤岛检测装置。
技术介绍
在全球范围太阳电池产量飞速增长的同时,光伏并网发电的发展步伐逐年加快。过去几年,随着光伏并网发电技术的快速发展,在政府支持性政策的驱动下,发达国家如美国、德国、日本等国家的并网发电系统装机容量在高速增长。近年来,随着我国光伏发电政策的不断完善,我国光伏并网发电系统装机容量也在迅猛增长。据EPIA统计数据,21世纪末期,太阳能并网发电容量将占世界能源总需求量的50%左右。随着光伏并网发电成本的降低和传统能源的枯竭,光伏并网发电将会与传统发电成本相当,并很快会进入商业化应用阶段。然而,孤岛效应(Islanding)是制约光伏并网发电系统电力传输的一个不容忽视的问题,孤岛效应对发电系统的设备、检查维修人员的安全带来致命威胁。传统的孤岛检测方法是采用主动检测方法或被动检测方法实现孤岛检测。在传统方法中,被动检测法不会对系统带来谐波污染,但是其灵敏度不高,在实际系统中经常会出现失效的情况;主动检测法通过有意地加入扰动信号,然后根据输出的响应特性来判断孤岛现象是否产生,该方法能够一定程度上提高孤岛检测灵敏度,但是主动注入的扰动信号会引入新的谐波污染,影响系统的输出电能质量和电网系统的运行安全。实际的光伏并网发电系统是一个强非线性系统,已有研究表明:在这种典型的非线性系统中存在复杂的动力学行为。利用非线性系统在不同参数条件下的不同动力学性质,混沌检测理论方法在诸 多领域已经得到应用,到目前为止,混沌检测理论在光伏并网发电孤岛检测中并未得到实际应用。现有的基于混沌理论的孤岛检测方法则只是简单地把过压/欠压(0VP/UVP)信号取出,根据信号强度改变系统的某个参数,然后用示波器在时域上观察动力学系统的运动相图,来判断孤岛是否产生。这种通过系统动力学相图判断孤岛现象有明显缺陷。一方面,系统的相图随时间演化不断处于变化之中,机器不便于直接进行判断,必须要有人实时观测,很难实现孤岛的检测、报警自动化;另一方面,一个完整的相图需要较长时间才能形成,因此,通过相图判断孤岛现象实时性不好。
技术实现思路
本技术所要解决的技术问题是传统孤岛检测方法存在检测灵敏度低、可靠性差、对输出电能质量产生谐波污染等问题,提供一种可靠、有效、高灵敏度、且智能化的基于李雅普诺夫指数变化的光伏发电孤岛检测装置。为解决上述问题,本技术是通过以下技术方案实现的:一种基于李雅普诺夫指数变化的光伏发电孤岛检测装置,主要由混沌检测模块、数字锁相环模块、最大功率点跟踪模块、乘法器、同步控制模块和IGBT驱动模块组成;其中混沌检测模块的输入端和数字锁相环模块的输入端同时连接在光伏并网发电系统的公共连接点处,数字锁相环模块的输出端和最大功率点跟踪模块的输出端分别连接在乘法器的2个输入端上,乘法器的输出端和混沌检测模块的输出端分别接入同步控制模块的2个输入端,同步控制模块的输出端经IGBT驱动模块与光伏电池板阵列输出端处的DC/AC转换模块相连。上述系统还进一步包括孤岛报警通信模块,该孤岛报警通信模块的输入端连接在混沌检测模块的输出端上,孤岛报警通信模块的输出端与远程监控服务器相连;孤岛报警通信模块在接收到混沌检测模块发出的孤岛产生信号后,向远程监控服务器发送孤岛报警信息。与现有技术相比,本技术不仅解决了传统孤岛被动检测法的检测灵敏度低的问题,同时又不会向系统注入新的谐波污染,对光伏并网发电系统性能的提高具有非常重要的价值;综上所述,本技术易于实现孤岛检测的自动化,具有更高的智能、更高的检测灵敏度,更快的检测速度,而且不会对系统输出电能质量产生影响,具有非常广阔的应用前景。【专利附图】【附图说明】图1是本技术的孤岛检测装置在光伏并网系统中的应用框图。【具体实施方式】一种基于李雅普诺夫指数变化的光伏发电孤岛检测装置,如图1所示,主要由混沌检测模块、数字锁相环模块、最大功率点跟踪模块、乘法器、同步控制模块、IGBT驱动模块和孤岛报警通信模块组成。其所针对的光伏并网发电系统由光伏电池板阵列、DC/AC转换模块、并网控制开关、本地用户负载、公共主电网等组成。光伏电池板阵列输出端连接DC/AC转换模块的输入端,DC/AC转换模块的输出端经并网控制开关与公共主电网相连。本地用户负载连接在DC/AC转换模块的输出端与并网控制开关之间的公共连接点(PCC)上。混沌检测模块的输入端和数字锁相环模块的输入端同时连接在光伏并网发电系统的公共连接点处,数字锁相环模块的输出端和最大功率点跟踪模块的输出端分别连接在乘法器的2个输入端上,乘法器的输出端和混沌检测模块的输出端分别接入同步控制模块的2个输入端,同步控制模块的输出端经IGBT驱动模块与光伏电池板阵列输出端处的DC/AC转换模块相连。该孤岛报警通信模块的输入端连接在混沌检测模块的输出端上,孤岛报警通信模块的输出端与远程监控服务器相连。混沌检测模块为一独立的硬件模块,其主要负责对光伏并网发电系统的公共连接点的电压进行采样,采样电压u按比例k进行适当的衰减后形成扰动电压信号Λ U、或将采样电压u转换为频率f后,将频率f与公共电网的参考频率/的频率差值转换成扰动电压信号Λ u,将上述扰动电压信号Λ u输入到预先构建在其内部的一维非线性映射的迭代方程中,调制该迭代方程的参数β,根据一维非线性映射的迭代方程的Lyapunov指数在调制前后的变化,检测出光伏并网发电系统是否出现孤岛现象。数字锁相环模块通过对公共连接点的电压信号取样后进行锁相,输出当前电网的频率和相位信息sin (ω t+ Θ ),并与最大功率点跟踪模块的运算结果Imppt在乘法器中相乘,得到并网运行的参考电流信号iMf,同步控制模块根据参考电流信号id和混沌检测模块发出的孤岛产生信号,对公共主电网电压的频率、相位进行跟踪和同步控制。同步控制模块的控制信号由IGBT驱动模块进行功率放大后直接驱动光伏电池板阵列输出端处的DC/AC转换模块的IGBT功率管,实现DC/AC变换,将光伏电池板阵列输出的直流电能转换成与公共电网电压同步的交流电,馈入公共主电网中。孤岛报警通信模块在接收到混沌检测模块发出的孤岛产生信号后,向远程监控服务器发送孤岛报警信息。孤岛报警通信模块内部由电力线载波通信、GPRS/GSM通信两部分组成,通过有线和无线通信方式,将孤岛报警信号发送到远程监控服务器。当光伏并网发电系统出现孤岛效应时,混沌检测模块向孤岛报警通信模块和同步控制本文档来自技高网
...

【技术保护点】
基于李雅普诺夫指数变化的光伏发电孤岛检测装置,其特征是:主要由混沌检测模块、数字锁相环模块、最大功率点跟踪模块、乘法器、同步控制模块和IGBT驱动模块组成;其中混沌检测模块的输入端和数字锁相环模块的输入端同时连接在光伏并网发电系统的公共连接点处,数字锁相环模块的输出端和最大功率点跟踪模块的输出端分别连接在乘法器的2个输入端上,乘法器的输出端和混沌检测模块的输出端分别接入同步控制模块的2个输入端,同步控制模块的输出端经IGBT驱动模块与光伏电池板阵列输出端处的DC/AC转换模块相连。

【技术特征摘要】

【专利技术属性】
技术研发人员:廖志贤罗晓曙黄国现
申请(专利权)人:广西师范大学
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1