当前位置: 首页 > 专利查询>郭雷专利>正文

一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法技术方案

技术编号:9196579 阅读:132 留言:0更新日期:2013-09-26 01:00
本发明专利技术涉及一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法,涉及无人机、舰船、车辆、等地球大气层内运载体的SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法。其特征是将SINS、GPS、偏振传感器以及环境中的干扰进行分类,对不同类型的干扰进行干扰建模,可建模干扰通过设计干扰观测器来抵消,高斯随机变量通过H2优化技术来抑制,范数有界未知变量通过H∞优化技术来抑制。本发明专利技术充分利用了SINS/GPS/偏振光组合导航系统中干扰的特性,通过设计干扰观测器的方法以及鲁棒技术对干扰进行干扰抵消和干扰抑制,可用于提高地球大气层内运载体的导航精度。

【技术实现步骤摘要】
一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法
本专利技术涉及一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法。该方法充分利用了SINS/GPS/偏振光组合导航系统中存在的多源干扰特性,通过设计干扰估计器的方法抵消可建模干扰,设计混合鲁棒滤波器来抑制高斯噪声和范数有界干扰,可提高导航系统的精度、可靠性以及抗干扰能力。
技术介绍
随着航空工程领域飞行器的工作环境变得日益复杂,对飞行器自主性、抗干扰性和快速反应能力提出了越来越高的要求,因此导航系统的滤波精度以及可靠性变的越来越重要。受到硬件技术以及成本的限制,单一的导航系统很难满足载体的自主性,抗干扰性和快速反应的需求。研究抗干扰性强、精度高的滤波算法是解决问题的途径之一。SINS/GPS/偏振光组合导航系统为一多源干扰系统。SINS自身存在的模型不确定性,量测噪声、惯性器件漂移,机械振动、空间环境等干扰。GPS受到的电磁干扰;偏振传感器存在的光电器件的输出误差,偏振传感器的安装误差,传感器的采集、处理与控制电路在工作时产生的电热噪声随机误差,以及传感器在工作中由环境变化引起的输入误差。SINS误差方程、GPS伪距量测方程、偏振光量测方程本质上都是非线性的。上述这些干扰共同作用使得SINS/GPS/偏振光组合导航表现出非常复杂的非线性。卡尔曼滤波器(KF)是一种最小方差的最优估计器,已经广泛的应用到实际系统中,但是卡尔曼滤波器将干扰假设为单一的高斯噪声,且要求系统模型足够准确,因此传统的卡尔曼滤波器具有很大的保守性,对于多源干扰系统,难以实现高精度控制和估计。对于非线性系统,处理方法主要有扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、粒子滤波,H2/H∞+DOBC抗干扰滤波等。EKF将非线性模型基于泰勒级数展开,取一阶截断作为原状态方程和量测方程的近似,EKF要求噪声为高斯噪声且模型足够准确,EKF滤波方法在线性化的过程中存在着舍入误差,因此产生较大的模型误差,系统存在着模型不确定性,且对于非高斯噪声等其他干扰不能很好的估计,因此对滤波精度有一定的影响。UKF可以直接应用于非线性模型,但要求噪声为高斯噪声,且UKF计算量较大,不能有效的实施。粒子滤波算法复杂、计算量大,实时性差,在实际应用中存在很多问题。多目标优化抗干扰滤波充分利用了系统中干扰的特性,将系统中干扰进行分类建模,对于某些特性已知的干扰,可以充分利用其信息,分别采用干扰抵消和干扰抑制的方法,建立一类同时具有干扰抵消与抑制性能的多目标优化抗干扰滤波方法的研究框架。可建模的干扰通过设计干扰观测器来抵消,设计鲁棒滤波器来抑制高斯噪声和能量有限的干扰。建立含有多源干扰的惯性导航系统误差新模型,并将多目标优化抗干扰滤波方法应用到SINS/GPS/偏振光组合导航中,提高惯性导航系统的滤波精度、可靠性以及抗干扰能力。
技术实现思路
本专利技术要解决的技术问题是:克服SINS的机械振动、建模误差、非线性动态、环境干扰等干扰,提供一种精度高、可靠性强、抗干扰能力强的SINS/GPS/偏振光导航系统多目标优化抗干扰滤波方法。本专利技术解决其技术问题所采用的技术方案为:将SINS、GPS、偏振传感器以及环境中的干扰进行分类,对不同类型的干扰进行干扰建模,高斯随机变量和范数有界未知变量分别通过H2技术以及H∞技术来抑制,可建模干扰通过设计干扰观测器来抵消。具体包括以下步骤:(1)建立以偏振方位角α为量测量的量测方程;(2)充分利用干扰特性,建立基于失准角速度v、位置p为状态的状态方程以及基于速度v、位置p以及偏振方位角α为量测量的量测方程,并将状态方程和量测方程离散化;(3)对系统的干扰进行分类,对不同类型的干扰进行干扰建模;(4)设计漂移估计器估计并抵消可建模干扰;(5)根据设计的漂移估计器,构造H2/H∞混合滤波器;(6)构造状态估计误差系统,用多目标优化抗干扰滤波算法对所述H2/H∞混合滤波器进行集中式滤波,并输出导航信息。所述的步骤(1)中基于偏振方位角α为量测量的量测方程中的量测量为:其中,为载体坐标系到偏振模块坐标系的姿态转换矩阵,为导航系和载体系之间姿态转移矩阵的名义值,为地理系和导航系之间姿态转移矩阵的名义值,Φ×为姿态角的反对称矩阵,δθ×为[δλsinLδλcosLδL]的反对称矩阵,为导航坐标系到载体坐标系的姿态转换矩阵,为地球坐标系到导航坐标系的姿态转换矩阵,为当地太阳矢量在地球坐标系的表示。将系统中的干扰进行分类,建立一类多源干扰SINS/GPS/偏振导航系统误差新模型:x(k+1)=Ax(k)+Bωn(k)+u(k)+B1ω1(k)+B2ω2(k)(2)y(k)=Cx(k)+Dωn(k)+u(k)+D1ω1(k)+D2ω2(k)其中,x(k)为系统状态变量;A为系统状态转移矩阵;ω(t)为惯性传感器漂移,近似描述为一阶马尔科夫过程、ω1(t)为高斯噪声,ω2(t)为范数有界干扰;B(t),B1(t),B2(t)分别为过程噪声矩阵,高斯噪声矩阵,范数有界干扰矩阵,C为系统量测矩;D(t),D1(t),D2(t)分别为量测过程噪声矩阵和量测高斯噪声矩阵和范数有界干扰矩阵;控制输入u(k)用于标定和补偿。所述步骤(3)中的干扰建模具体描述为:将惯性传感器漂移近似描述为一阶马尔科夫过程,对于SINS模型误差、SINS机械振动、环境干扰等价描述为一范数有界干扰。所述步骤(4)中的漂移估计器,所设计具体形式为:其中,为惯性传感器漂移ωn(k)的估计值,K为所设计的漂移估计器的增益矩阵。y(k)为量测输出,为量测输出的估计值。所述步骤(5)中的H2/H∞混合滤波器,所设计具体形式为:(4)其中,为状态x(k)的估计值,控制输以及用来标定和补偿传感器的漂移,矩阵L为待定的滤波器增益阵。构造状态估计误差系统,令将系统状态误差与惯性传感器漂移估计误差进行状态扩维,则估计误差系统满足:(5)令新的状态为M,则将H∞参考输出定义为:将H2参考输出定义为其中,C∞1,C∞2,C21,C22为选定的权矩阵。将公式(6)(7)与估计误差系统(5)联立得闭环系统为:其中:通过MATLAB中的LMI工具箱求解滤波增益。用多目标优化抗干扰滤波算法进行滤波。通过GPS输出对速度和位置进行校正,通过偏振传感器输出的偏振方位角对载体的姿态角进行校正。本专利技术与现有技术相比的优点在于:本专利技术将SINS/GPS/偏振光导航系统中的干扰进行了分类建模,不把干扰当成单一的高斯噪声,对于某些特性已知的干扰,可以充分利用其信息,分别采用干扰抵消和干扰抑制的方法,建立了一类同时具有干扰抵消与抑制性能的多目标优化抗干扰滤波方法的研究框架。可建模的干扰通过设计干扰观测器来抵消,设计鲁棒滤波器来抑制高斯噪声和能量有限的干扰。建立含有多源干扰的SINS/GPS/偏振光导航系统误差新模型,并将多目标优化抗干扰滤波方法应用到SINS/GPS/偏振光的组合导航中,提高惯性导航系统的精度和可靠性。附图说明图1为本专利技术的一种多目标优化抗干扰滤波算法流程图。图2为本专利技术的一种多目标优化抗干扰滤波算法编排图。如图1所示,本专利技术的具体实施方法如下:(1)SINS/GPS/偏振光组合导航系统的数学模型的建立,包括系统状态方程和量测方本文档来自技高网
...
一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法

【技术保护点】
一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法,其特征在于:将SINS、GPS、偏振传感器以及环境中的干扰进行分类,对不同类型的干扰进行干扰建模,可建模干扰通过设计干扰观测器来抵消,高斯随机变量和范数有界未知变量分别通过H2技术以及H∞技术来抑制。具体步骤如下:步骤一:天空偏振光/INS/地磁组合导航系统的干扰归为以下几类:表示惯性传感器的一阶马尔科夫过程、高斯噪声、系统非线性,模型不确定性、摄动和非高斯噪声,设计漂移估计器,来抑制可建模干扰;步骤二:设计混合鲁棒滤波器,来抑制不可建模干扰,其中通过H2优化技术抑制高斯噪声,通过H∞优化技术来抑制范数有界干扰;步骤三:根据设计的漂移估计器以及混合鲁棒滤波器,构造状态估计误差系统,设计多目标优化抗干扰滤波算法,对所述多目标优化抗干扰滤波器进行集中式滤波,并输出导航信息。

【技术特征摘要】
1.一种SINS/GPS/偏振光组合导航系统多目标优化抗干扰滤波方法,其特征包括以下步骤:(1)建立以偏振方位角α为量测量的量测方程;(2)充分利用干扰特性,建立基于失准角速度v、位置p为状态的状态方程以及基于速度v、位置p以及偏振方位角α为量测量的量测方程,并将状态方程和量测方程离散化;(3)对系统的干扰进行分类,对不同类型的干扰进行干扰建模;(4)设计漂移估计器估计并抵消可建模干扰,通过H2优化技术抑制高斯噪声;(5)根据设计的漂移估计器,构造H2/H∞混合滤波器,通过H∞优化技术来抑制范数有界干扰;(6)根据设计的漂移估计器以及混合鲁棒滤波器,构造状态估计误差系统,设计多目标优化抗干扰滤波算法,构造状态估计误差系统,用多目标优化抗干扰滤波算法对所述H2/H∞混合滤波器进行集中式滤波,并输出导航信息;所述的步骤(1)中基于偏振方位角α为量测量的量测方程中的量测量为:其中,为载体坐标系到偏振模块坐标系的姿态转换矩阵,为导航系和载体系之间姿态转移矩阵的名义值,为地理系和导航系之间姿态转移矩阵的名义值,Φ×为姿态角的反对称矩阵,δθ×为[δλsinLδλcosLδL]的反对称矩阵,为导航坐标系到载体坐标系的姿态转换矩阵,为地球坐标系到导航坐标系的姿态转换矩阵,为当地太阳矢量在地球坐标系的表示;将系统中的干扰进行分类,建立一类多源干扰SINS/GPS/偏振导航系统误差新模型:其中,x(k)为系统状态变量;A为系统状态转移矩阵;ωn(k)为惯性传感器漂移,近似描述为一阶马尔科夫过程、ω1(t)为高斯噪声,ω2(t)为范数有界干扰;B(t),B1(t),B2(t)分别为过程噪声矩阵,高斯噪声矩阵,范数有界干扰矩阵,C为系统量测矩;D(t),D1(t),D2(t)分别为量测过程噪声矩阵和量测高斯噪声矩阵和范数有界干扰矩阵;控制输入u(k)用于标定和补偿;所述步骤(3)中的干扰建模具体描述为:将惯性传感器漂移近似描述为一阶马尔科夫过程,对于SINS模型误差、SINS机械振动、环境干扰的价描述为一范数有界干扰...

【专利技术属性】
技术研发人员:郭雷杨健曹松银杜涛周大鹏张霄罗建军
申请(专利权)人:郭雷
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1