当前位置: 首页 > 专利查询>何阳专利>正文

模糊自组织神经网络的训练方法技术

技术编号:8594295 阅读:131 留言:0更新日期:2013-04-18 07:36
本发明专利技术公开了模糊自组织神经网络的训练方法,包括:(a)确定训练样本x;(b)随机初始化权值wij,0<wij<1,i=0,1,…,N-1;j=0,1,…,K-1;(c)输入所有样本点,计算每个样本对所有子集的隶属度;(d)调整网络权值;(e)根据网络稳定的判定条件,如满足,则学习结束,如不满足,则转入步骤(c)继续学习。本发明专利技术能够完成对自组织神经网络的训练,且训练效果好,训练成本低。

【技术实现步骤摘要】

本专利技术涉及一种。
技术介绍
随着地震属性技术的发展,地震储层预测已成为指导油气勘探开发的有效手段。然而,由于地震属性种类繁多,与预测对象之间的关系复杂,不同工区和不同储层对所预测目标敏感的(最有效、最具代表性的)地震属性是不完全相同的。即使是同一工区、同一储层,预测对象不同,对应的敏感属性也存在差异。由于地震属性的这种多解性,使得某些属性会严重影响储层预测的精度,因此对地震属性进行优化选择就显得十分必要。地震属性优化方法可以明显的提高地震储层预测的精度,更有效地进行储层描述,进一步提高钻井成功率,具有明显的经济效益和社会效.、/■Mo由于地震属性是指由叠前或叠后地震数据,经过数学变换而导出的一些包括外部几何形态、内部反射结构、连续性、振幅、频率和速度等代表地震相特征的参数。而地震相是特定地震反射参数所限定的三维空间中的地震反射单元,它是特定沉积相或地质体的地震响应。因此,应用地震属性划分地震相类型是非常有意义的。最后,通过地震相分析解释这些地震相所代表的沉积相和沉积环境,以达到地震相转换为沉积相的目的。`目前,常采用自组织神经网络对地震属性进行聚类分析以达到划分地震相类型的目的,但是传统的自组织神经网络由于每输入一个训练样本就被归到距离最近的一类子集中,这种训练方式可能过于仓促,影响网络对所有训练样本特征的掌握,进而影响分类的正确性。同时也极易引起网络权值的振荡,使得学习时间较长。另外,自组织神经网络的增益函数、界限函数、邻域等网络参数的选取是一个十分棘手的问题,它们随着划分类数的不同而变化。鉴于自组织神经网络的这些问题,本文采用一种模糊自组织神经网络与地震属性结合的方式进行地震相模式识别。模糊自组织神经网络不同于传统的自组织神经网络,它是一次输入所有的训练样本点,确定每个样本点对每类子集的隶属程度。网络权值的调整综合考虑了所有样本的特征信息,一轮学习只调整一次,大大节约了学习时间。而且这种方法进行地震相分析,可以有效地识别河道、三角洲、冲积扇、断层、岩性异常体等沉积相特征和地质现象,形成一种实用性强、精度高的储层预测技术。地震属性优化就是优选出对求解问题最敏感、最有效或最有代表的属性,以便提高储层预测的精度。在进行地震属性优化处理前,通常要对提取的所有属性进行标准化处理(如归一化等)。地震属性的优化始于20世纪70年代出现的“亮点”技术,在该技术中,选择反射波的振幅和极性等,即早期的“专家优化”。随着人工智能技术的发展,更多数学方法被引入到地震属性的优化方法中。目前属性的优化方法较多,但可将其分为两大类利用专家知识进行优化和利用数学方法进行自动优化。专家方法已不能满足目前储层预测的要求,只能作为一种辅助的手段。当前国内外的地震属性优选方法主要是数学方法,主要有K-L变换、局部线性嵌入算法(LLE)、等距映射(ISOMAP)、多重判别分析法(MDA)、属性贡献量法、搜索算法、遗传算法、粗集理论(RS)等。随着地震属性技术的发展,地震储层预测技术作为一个分支也得到了较快的发展。从早期的单属性预测到后来利用多种地震属性进行储层预测的技术;从早期的专家方法到后来的人工智能方法。自80年代起,“模式识别”受到特别重视,先后研究出了 “模糊模式识别”、“统计模式识别”、“神经网络模式识别”和“函数逼近”等方法,这以后储层预测技术得到了快速的发展。预测对象从预测油气发展到预测储层参数和地层岩性等。目前,根据预测方法可以分为函数逼近类预测和模式识别类预测。函数逼近类方法主要是对储层参数等进行预测,主要参数包括砂泥岩百分比、孔隙度、含油饱和度、储层厚度、地层压力等,常采用BP神经网络、径向基神经网络、⑶SI网络等。模式识别类方法主要用于含油气性预测、地震相模式识别,采用的方法已经从统计模式识别、模糊模式识别过渡到自组织神经网络、BP神经网络、分形理论、灰色理论等。地震相分析技术作为储层预测的一部分,自然也得到了较快发展。它是20世纪70年代末发展起来的一种利用地震资料进行地质解释的地质方法。发展至今,地震相分析已由肉眼判断地震相单元的各种参数、手工制作地震相图件到自组织神经网络判断不同单元的地震相参数,并直接对地震相参数进行分类。最初的手工操作,费时费工,特别是当地震剖面上反射异常不突出时,此项工作是更加困难,后来发展到了用统计模式识别和模糊聚类来自动划分地震相。但是统计模式识别对属性提取和选择的要求高,只能适用于几种简单的形式,模糊聚类方法在建立准确合理的隶属度函数方面难度较大,且当数据量大时运算时间长,有时几乎不能够实现。后来运用了神经网络技术进行模式识别取得了良好的效果。因为人工神经网络可以处理一些环境复杂、背景知识不清楚、推理规则不明确的问题,而且允许样本有较大的缺损和畸变。就目前有关划分地震相的文章来看,多选取的是Kohonene自组织神经网络。地震属性优化不仅是模式识别的关键之一,对提高函数逼近法地震储层预测精度也具有重要意义。在地震储层预测中,通常提取多个属性,采用模式识别或函数逼近法进行储层预测。但在不同地区、不同层位,对所预测对象敏感的(或有效的、最有代表性的)地震属性是不完全相同的;即使在同一地区、同一层位,对所预测的对象敏感的地震属性也是有差异的。因此有必要研究储层预测中的地震属性优化方法。目前地震属性的优化方法较多,但可将其分为两大类利用专家知识进行优化和利用数学方法进行自动优化。专家优化,一般来说油田专家对某个地区带有最多储层信息的地震属性是比较了解的,可凭经验进行地震属性选择。有时专家能提出几组较优的属性或属性组合,但哪一组最优难下结论。这可以通过计算误识率(模式识别法)或预测误差(函数逼近法)并比较,选取误识率或预测误差小者为最优的地震属性或地震属性组合。与专家优化方法相比,数学优化方法要复杂得多,而且具有更广泛的适用性。粗糙集(rough set,简称RS或粗集)理论是1982年,波兰华沙理工大学的Z. Pawlak教授以关系理论为基本工具,推广传统的集合理论提出来的,并于1991年出版了粗糙集理论专著。为研究不完整数据进行分析、推理,发现数据间的关系,提取有用属性,简化信息处理,研究不精确、不确定知识的表达、学习、归纳方法提供了一个有力的工具。同时,RS理论还为信息科学和认知科学提供了新的科学逻辑和研究方法,并且为智能信息处理提供了有效的处理技术。RS理论无需提供出问题所需处理的数据集合外的任何先验信息,仅根据观察数据删除冗余信息,比较不完整的知识程度——粗糙度,属性间的依赖性与重要性,抽取分类规则等的能力。由此,粗糙集为数据库知识发现、专家系统、决策支持系统、模式识别、模糊控制等,提供了一种新的数学方法。
技术实现思路
本专利技术的目的为了克服现有技术的不足与缺陷,提供一种,该能够完成对自组织神经网络的训练,且训练效果好,训练成本低。本专利技术的目的通过下述技术方案实现,包括以下步骤(a)确定训练样本X ;(b)随机初始化权值 Wij, O < Wij < I, i = O, I,…,N-1 ; j = O, I,…,K-1 ;(c)输入所有样本点,计算每个样本对所有子集的隶属度;(d)调整网络权值;(e)根据网络稳定的判定条件,如满足,则学习结束,如不满足,则转入本文档来自技高网
...

【技术保护点】
模糊自组织神经网络的训练方法,其特征在于,包括以下步骤:(a)确定训练样本x;(b)随机初始化权值wij,0<wij<1,i=0,1,…,N?1;j=0,1,…,K?1;(c)输入所有样本点,计算每个样本对所有子集的隶属度;(d)调整网络权值;(e)根据网络稳定的判定条件,如满足,则学习结束,如不满足,则转入步骤(c)继续学习。

【技术特征摘要】
1.模糊自组织神经网络的训练方法,其特征在于,包括以下步骤 (a)确定训练样本X;(b)随机初始化权值Wij7O < Wij < I, i = O, I, ···, N-1 ; j = O, I, ···, K-1 ; (c)输入所有样本点,计算每个样本对所有子集的隶属度; (d)调整...

【专利技术属性】
技术研发人员:何阳
申请(专利权)人:何阳
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1