一种机械压滤微波耦合脱水干化一体化装置制造方法及图纸

技术编号:21917684 阅读:22 留言:0更新日期:2019-08-21 13:35
本实用新型专利技术涉及一种机械压滤微波耦合脱水干化一体化装置,包括进泥泵(7)、进泥管(6)、高压机械脱水装置(1)、高压气泵(2)、回风管(4)、负压加热装置(5)、滤液排水管(9)、微波破壁干化装置(8),所述进泥管(6)的进泥口设有进泥泵(7);所述高压机械脱水装置(1)的尾板(1‑11)与进泥管(6)相连接,所述高压机械脱水装置(1)下端设有滤液排水管(9),所述滤液排水管(9)通过金属软管与高压机械脱水装置(1)中泄水孔连接;所述负压加热装置(5)的进风口通过管道与高压机械脱水装置(1)相连接,所述回风管(4)入口设有高压气泵(2),所述高压气泵(2)通过管道与微波加热装置(8)相连。

A Microwave Coupled Dehydration and Drying Integrated Device for Mechanical Pressure Filtration

【技术实现步骤摘要】
一种机械压滤微波耦合脱水干化一体化装置
本技术涉及污水污泥处理领域,具体地说是一种机械压滤微波耦合脱水干化一体化装置。
技术介绍
市政污泥是污水经过污水处理厂处理后的产物,是一种由有机残片、细菌菌体、无机颗粒等组成的高含水率非均质体,采用普通方法难以脱水等特点。早期的污泥处理装置有板框压滤机、转鼓离心机和带式过滤压滤机,经过这些设备脱水后污泥含水率一般在75%左右,这些污泥含水率依旧很高,对于运输以及成本消耗较大,并且无法在填埋场直接处理,这样放置时间一长,存活在污泥中的病菌就会超标,易腐烂产生恶臭造成环境污染。污泥中含有4种形态水,即自由水、吸附水、毛细水和内部水。虽然吸附水、毛细水和内部水占比只是小部分,但是对污泥的高干脱水还是有很大的影响。通过微波调理后的污泥破坏了污泥胶体结构,释放出内部水变成易于通过机械方法脱除的自由水,而且增大污泥颗粒,使得污泥变大,可进一步提高污泥的脱水性能,所以,采用微波是污泥调理的一种重要手段。现有技术是污泥先经过微波调理后,然后通过泵输入到脱水设备中进行脱水,污泥变成含水率较低的泥饼。污泥的含水率一般还位于40-50%之间。为了进一步降低污泥的含水率,进入到下一步干化装置中,通过热干化方法将其进行干化处理达到所要求的含水率。现有技术存在几个问题:1、微波调理、机械脱水、干化是不同的阶段,需要配备单独的设备,导致整个系统复杂繁琐;2、经过微波调理后的污泥颗粒增大,然后又经过泵的剪切输送,将大颗粒污泥又被打碎成为小颗粒,影响脱水性能;3、当前微波的干化能耗较大,热能没有充分得到利用。
技术实现思路
本技术针对上述现有技术存在的不同脱水工序都需要配备单独设备、微波调理的干化能耗未能得到充分利用的技术问题,提出一种基于原位的微波调理及机械压力协同作用,实现深度脱水,并合理分配利用能量以降低能耗的方式处理污泥,实现微波调理-机械脱水-干化有机融合的一体化技术。本技术的技术解决方案是,提供一种机械压滤微波耦合脱水干化一体化装置,包括进泥泵、进泥管、高压机械脱水装置、高压气泵、回风管和滤液排水管;所述的机械压滤微波耦合脱水干化一体化装置还包括负压加热装置和微波破壁干化装置,所述微波破壁干化装置嵌入在高压机械脱水装置的滤板中,微波在原位对污泥破壁改性同时进行脱水,形成原位微波调理,所述进泥管的进泥口设有进泥泵,所述高压机械脱水装置的尾板与进泥管相连接,所述高压机械脱水装置下端设有滤液排水管,所述滤液排水管通过金属软管与高压机械脱水装置中泄水孔连接,所述负压加热装置的进风口通过管道与高压机械脱水装置相连接,所述回风管入口设有高压气泵,所述高压气泵通过管道与微波破壁干化装置相连。可选的,所述高压机械脱水装置包括首压滤板、压滤尾板、动力装置、中间压滤板、推动油缸和力放大机构,所述首压滤板和压滤尾板之间设置若干块中间压滤板,所述力放大机构安装在首压滤板和中间压力传递板,所述推动油缸作用于力中间压力传递板。可选的,所述中间压滤板一侧为凸模结构,另一侧为凹模结构,所述首压滤板为凹模结构,所述压滤尾板为凸模结构,使之与相邻的中间压滤板形成密闭的压滤腔室,所述的中间压滤板中凸模结构嵌入到相邻滤板的凹模结构中形成密闭的压滤腔室,所述滤板凸模嵌入凹模中的部分边缘设有密封圈。可选的,所述微波破壁干化装置包括微波发生器、陶瓷材料板、塑胶缓冲垫和塑料衬板,所述首压滤板凹模侧开有一环形槽,所述环形槽上设有4个对称分布的方形槽,所述压滤腔室与方形槽之间设有陶瓷材料板、塑胶缓冲垫和塑料衬板,所述陶瓷材料嵌入压滤板的板体中与所述方形槽构成密闭的金属腔室,所述微波发生器安置在金属腔室内,所述金属腔室设有散热通风道,所述塑胶缓冲垫设置在所述陶瓷材料板与塑料衬板之间,用于缓冲压力,防止陶瓷材料板被压碎,所述中间压滤板中间设有的进泥通道。可选的,所述中间压滤板的散热通风道设置在侧面,所述相邻中间压滤板之间散热通风道通过金属软管串联连接,所述金属软管最后的出风口与高压气泵相连;所述金属密封挡环安装在压滤板凸模结构上,所述压滤板与金属密封挡环之间设有弹簧,所述凸模与凹模配合时,所述弹簧受力将金属密封挡环与凹模边缘压紧密封。可选的,所述首压滤板、中间压滤板、压滤尾板中的凸模结构均相同以及所有压滤板的凹模结构均相同。可选的,所述中间压滤板上方设有通气孔,所述通气孔与压滤腔室相通,所述通气孔通过金属波纹管与负压加热装置相连接,所述泄水孔设置在中间压滤板的下方。可选的,所述负压加热装置包括进风阀、冷凝器、压缩机、真空泵、蒸发器、真空阀和积液阀,所述真空泵通过管道与蒸发器出风口相连,所述蒸发器进风口设有真空阀,所述真空阀通过管道分别与压滤板和进风阀相连,所述进风阀与高压气泵出风口相连,所述真空泵通过管道与冷凝器的进风口相连接,所述冷凝器的出风口通过管道与高压气泵的进气口相连接,所述热风阀设置在冷凝器与高压气泵连接管道上。可选的,所述蒸发器放置在由金属制成的密闭腔室中,所述密闭腔室底部设计成漏斗状,便于冷凝水的回流收集,所述积液阀设置在腔室的底部。可选的,所述冷凝器的加热翅片设计成波浪形,增加空气与加热片的接触面积,所述波浪形加热翅片成“S”型风道布置在密闭的腔室内,延长加热空气行走路径。采用以上结构,具有如下优点:将微波调理-脱水-干化形成一个有机整体,先通过微波作用对污泥调理,破坏污泥的胶体结构,同时增大污泥颗粒,减少颗粒之间的吸附水,提高脱水性能,然后再通过微波的加热效率高对污泥进行干化,进一步降低污泥含水率。形成原位的微波调理脱水,不需要经过泵的输送,形成原位的干化,不需要输送装置将污泥输入到干化系统,微波发生器在不同的处理阶段起到不同的作用,在调理阶段,利用微波的破壁功能进行调理,在干化阶段,利用微波的加热效率高进行脱水,同时在干化时采用负压,进一步提高干化效率,降低能耗。附图说明图1为本技术机械压滤微波耦合脱水干化一体化装置的结构示意图;图2为本技术高压机械脱水装置的结构示意图;图3为本技术微波破壁干化装置的结构示意图;图4为本技术负压加热装置的机构示意图。如图所示,1、高压机械脱水装置,1-1、固定支撑板,1-2、推动油缸,1-3、拉杆支撑架,1-4、首压滤板,1-5、中间压滤板,1-6、导轨,1-7、压滤尾板,1-8、尾板进泥口,1-9、滚轮,1-10、插销同步移动杆,1-11、力放大机构,1-12、中间压力传递板,1-13压滤腔室,2、高压气泵回,3、热风阀,4、风管,5、负压加热装置,5-1、进风阀,5-2、冷凝器,5-3、膨胀阀,5-4、储液罐,5-5、压缩机,5-6、真空泵,5-7、蒸发器,5-8、真空阀,5-9、积液阀,5-10、金属波纹管,6、进泥管,7、进泥泵,8、微波破壁干化装置,8-1、微波发生器,8-2、金属腔室,8-3、陶瓷材料板,8-4、塑胶缓冲垫,8-5、塑料衬板,8-6、金属密封挡环,9、滤液排水管。具体实施方式下面结合附图和具体实施实例对本技术作进一步说明。如图1所示,示意了本技术的机械压滤微波耦合脱水干化一体化装置的框架结构,包括进泥泵7、进泥管6、高压机械脱水装置1、高压气泵2、回风管4、负压加热装置5、滤液排水管9、微波破壁干化装置8,进本文档来自技高网...

【技术保护点】
1.一种机械压滤微波耦合脱水干化一体化装置,包括进泥泵(7)、进泥管(6)、高压机械脱水装置(1)、高压气泵(2)、热风阀(3)、回风管(4)和滤液排水管(9);其特征在于:所述的机械压滤微波耦合脱水干化一体化装置还包括负压加热装置(5)和微波破壁干化装置(8),所述微波破壁干化装置(8)嵌入在高压机械脱水装置(1)的滤板中,微波在原位对污泥破壁改性同时进行脱水,形成原位微波调理,所述进泥管(6)的进泥口设有进泥泵(7),所述高压机械脱水装置(1)的尾板(1‑7)与进泥管(6)相连接,所述高压机械脱水装置(1)下端设有滤液排水管(9),所述滤液排水管(9)通过金属软管与高压机械脱水装置(1)中泄水孔连接,所述负压加热装置(5)的进风口通过管道与高压机械脱水装置(1)相连接,所述回风管(4)入口设有高压气泵(2),所述高压气泵(2)通过管道与微波破壁干化装置(8)相连。

【技术特征摘要】
1.一种机械压滤微波耦合脱水干化一体化装置,包括进泥泵(7)、进泥管(6)、高压机械脱水装置(1)、高压气泵(2)、热风阀(3)、回风管(4)和滤液排水管(9);其特征在于:所述的机械压滤微波耦合脱水干化一体化装置还包括负压加热装置(5)和微波破壁干化装置(8),所述微波破壁干化装置(8)嵌入在高压机械脱水装置(1)的滤板中,微波在原位对污泥破壁改性同时进行脱水,形成原位微波调理,所述进泥管(6)的进泥口设有进泥泵(7),所述高压机械脱水装置(1)的尾板(1-7)与进泥管(6)相连接,所述高压机械脱水装置(1)下端设有滤液排水管(9),所述滤液排水管(9)通过金属软管与高压机械脱水装置(1)中泄水孔连接,所述负压加热装置(5)的进风口通过管道与高压机械脱水装置(1)相连接,所述回风管(4)入口设有高压气泵(2),所述高压气泵(2)通过管道与微波破壁干化装置(8)相连。2.根据权利要求1所述的机械压滤微波耦合脱水干化一体化装置,其特征在于:所述高压机械脱水装置(1)包括首压滤板(1-4)、压滤尾板(1-7)、动力装置、中间压滤板(1-5)、推动油缸(1-2)和力放大机构(1-11),所述首压滤板(1-4)和压滤尾板(1-7)之间设置若干块中间压滤板(1-5),所述力放大机构(1-11)安装在首压滤板(1-4)和中间压力传递板(1-12)之间,所述推动油缸(1-2)作用于力中间压力传递板(1-12)。3.根据权利要求2所述的机械压滤微波耦合脱水干化一体化装置,其特征在于:所述中间压滤板(1-5)一侧为凸模结构,另一侧为凹模结构,所述首压滤板(1-4)为凹模结构,所述压滤尾板为凸模结构,使之与相邻的中间压滤板(1-5)形成密闭的压滤腔室,所述的中间压滤板(1-5)中凸模结构嵌入到相邻滤板的凹模结构中形成密闭的压滤腔室(1-13),所述滤板凸模嵌入凹模中的部分边缘设有密封圈。4.根据权利要求3所述的机械压滤微波耦合脱水干化一体化装置,其特征在于:所述微波破壁干化装置(8)包括微波发生器(8-1)、陶瓷材料板(8-3)、塑胶缓冲垫(8-4)和塑料衬板(8-5),所述首压滤板(1-4)凹模侧开有一环形槽,所述环形槽上设有4个对称分布的方形槽,所述压滤腔室(1-13)与方形槽之间设有陶瓷材料板(8-3)、塑胶缓冲垫(8-4)和塑料衬板(8-5),所述陶瓷材料板(8-3)嵌入压滤板的板体中与所述方形槽构成密闭的金属腔室(8-2),所述微波发生器(8-1...

【专利技术属性】
技术研发人员:吴敏饶宾期卢锡龙张岩
申请(专利权)人:中国计量大学
类型:新型
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1