当前位置: 首页 > 专利查询>江苏大学专利>正文

一种纳米氧化钌的制备方法及其应用技术

技术编号:21897162 阅读:29 留言:0更新日期:2019-08-17 16:38
本发明专利技术属于电极材料领域,公开了一种纳米氧化钌的制备方法。本发明专利技术通过水热法制备得到比表面积较大而且成本较低的纳米氧化钌,方法简单、稳定和可控,利用Ru基材料代替传统Pt基材料降低成本,同时结合水热法制备纳米氧化钌催化剂,将催化剂应用在氢氧燃料电池中,不仅使催化剂的比表面积明显增大,而且提高了电子传输速度,比表面积的增加使催化剂材料在相同面积上的活性位点增多,从而提高其催化氧化氢气的性能。

Preparation and application of nano-ruthenium oxide

【技术实现步骤摘要】
一种纳米氧化钌的制备方法及其应用
本专利技术属于电极材料领域,具体涉及一种纳米氧化钌的制备方法。
技术介绍
化石能源的大量使用导致二氧化碳、二氧化硫等温室气体的排放逐年增加,进而加剧了温室效应和环境污染,如:酸雨等。目前已经发现多种再生能源,如:太阳能、风能、潮汐能等,但是这些能源严重依赖气候和地域环境,而且应用成本高。燃料电池由于具有效率高、对环境友好、在正常大气压下快速启动等特点被广泛研究。而氢气能量最高为142.35KJ/g,易于运输和储存,因此氢氧燃料电池是一个研究的热点。传统氢氧燃料电池采用Pt基催化剂,由于Pt基催化剂价格昂贵限制了其大规模商业化应用。
技术实现思路
针对现有技术存在的缺陷,本专利技术的目的在于提供一种纳米氧化钌的制备方法,此制备方法既有简单快捷、稳定、可控的特点,通过结合水热法制备得到比表面积较大而且成本较低的纳米氧化钌。而且Ru基催化剂作为Pt族金属有研究表明可以代替Pt作为氢氧化的催化剂,成本降低,催化氧化氢气性能良好。而氧化钌具有金红石型结构、高电子传导性、低电阻率和良好的化学稳定性。本专利技术解决其技术问题是采用以下技术方案来实现的。本专利技术提出一种纳米氧化钌的制备方法,包括如下步骤:(1)将三氯化钌溶于乙醇配制成三氯化钌乙醇溶液,超声,得到水热溶液;(2)将步骤(1)所得的水热溶液置于高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,升温到水热反应温度,并保温一段时间,反应结束后,冷却至室温,得到粉末状固体,洗涤,干燥,焙烧,得到纳米氧化钌。步骤(1)中,所述三氯化钌乙醇溶液的浓度为0.1~0.4mol/L。进一步地,三氯化钌乙醇溶液的浓度为0.15~0.3mol/L。步骤(2)中,所述水热反应的温度为150~200℃,保温时间为6~12h,升温速率为5℃/min。步骤(2)中,所述洗涤为去离子水和乙醇分别洗涤,干燥温度为60℃,干燥时间为12h。步骤(2)中,所述焙烧温度为400~600℃,焙烧时间为3h,升温速率为2℃/min。将本专利技术制备的纳米氧化钌用于制备纳米氧化钌碳纸电极电催化氧化氢气的用途。所述纳米氧化钌碳纸电极的制备步骤包括:(1)碳纸前处理:裁剪碳纸将碳纸裁剪成4×4cm2的正方形,以便制备成电极,超声清洗碳纸包括将碳纸依次浸泡于无水乙醇和去离子水中进行超声清洗,每次浸泡5~10min;(2)将纳米氧化钌进行研磨,配制喷涂溶液:称取48mg氧化钌、1600μL乙醇、480μL水和32μLNafion(5wt.%)超声分散均匀,喷涂于碳纸,最后在100℃下干燥10min。本专利技术的有益效果为:本专利技术的制备方法简单、稳定和可控,利用Ru基材料代替传统Pt基材料降低成本,同时结合水热法制备纳米氧化钌催化剂,将催化剂应用在氢氧燃料电池中,不仅使催化剂的比表面积明显增大,而且提高了电子传输速度,比表面积的增加使催化剂材料在相同面积上的活性位点增多,从而提高其催化氧化氢气的性能。附图说明附图1为本专利技术纳米氧化钌的制备流程图;附图2为本专利技术采用纳米氧化钌对氢气氧化的CV曲线图。具体实施方式为使本专利技术实施例的目的、技术方案和有点更加清楚,下面将对本专利技术实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或者制造商建议条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。下面对本专利技术实施例的纳米氧化钌催化剂及其制备方法进行具体说明。本专利技术实施例中提供了一种纳米氧化钌催化剂的制备方法,其包括通过结合水热法制备纳米氧化钌催化剂。(1)制备纳米氧化钌包括制备水热溶液,将三氯化钌溶于乙醇配制成0.1~0.4mol/L溶液,优选为将三氯化钌配制成0.15~0.3mol/L溶液,超声得到水热溶液,超声30min。然后,将水热溶液加入到高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,以5℃/min的加热速率加热到150~200℃,保温6~12h,保温结束后,冷却至室温,得到粉末状固体,用去离子水和乙醇分别洗涤,去除杂质,在60℃下干燥12h。最后在400~600℃下焙烧3h,升温速率为2℃/min,得到纳米氧化钌;(2)裁剪碳纸将碳纸裁剪成4×4cm2的正方形,以便制备成电极。超声清洗碳纸包括将碳纸依次浸泡于无水乙醇和去离子水中进行超声清洗,每次浸泡5~10min,超声清洗有利于清洁的碳纸表面,去掉杂质。(3)将得到的纳米氧化钌进行研磨,配制喷涂溶液,称取48mg氧化钌、1600μL乙醇、480μL水和32μLNafion(5wt.%)超声分散均匀,喷涂于经过处理的碳纸,最后在100℃下干燥10min。实施例1制备水热溶液:配制0.15mol/L的三氯化钌溶液,然后超声30min使其混合均匀。水热法:将制备好的水热溶液倒入高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,以5℃/min的加热速率加热到160℃,保温6小时后,冷却至室温,取出水热后的粉末,用去离子水和乙醇洗涤,除去杂质,在60℃下干燥12小时。最后将干燥后的固体置于马弗炉中以2℃/min的加热速率加热到500℃,保温3小时。实施例2制备水热溶液:配制0.15mol/L的三氯化钌溶液,然后超声30min使其混合均匀。水热法:将制备好的水热溶液倒入高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,以5℃/min的加热速率加热到170℃,保温6小时后,冷却至室温,取出水热后的粉末,用去离子水和乙醇洗涤,除去杂质,在60℃下干燥12小时。最后将干燥后的固体置于马弗炉中以2℃/min的加热速率加热到500℃,保温3小时。实施例3制备水热溶液:配制0.15mol/L的三氯化钌溶液,然后超声30min使其混合均匀。水热法:将制备好的水热溶液倒入高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,以5℃/min的加热速率加热到180℃,保温6小时后,冷却至室温,取出水热后的粉末,用去离子水和乙醇洗涤,除去杂质,在60℃下干燥12小时。最后将干燥后的固体置于马弗炉中以2℃/min的加热速率加热到500℃,保温3小时。工作电极的制备:(1)将碳纸进行前处理。将碳纸裁剪成4×4cm2的正方形,以便制备成电极。超声清洗碳纸包括将碳纸依次浸泡于无水乙醇和去离子水中进行超声清洗,每次浸泡5~10min,超声清洗有利于清洁的碳纸表面,去掉杂质。(2)制备喷涂溶液:称取48mg氧化钌、1600μL乙醇、480μL水和32μLNafion(5wt.%)超声分散均匀,喷涂于碳纸,最后100℃下干燥10min。将制备好的工作电极裁剪制备成为1cm2大小的工作电极,用Pt片电极作为对电极,饱和的甘汞电极做参比电极,使用上海辰华CHI660B型电化学工作站通过三电极体系对电极进行氢气氧化的电化学性能测试,在0.5mol/L的H2SO4溶液中通入30minN2作为空白,在0.5mol/L的H2SO4溶液中通入30minH2测试碳纸对氢气的电化学响应。由CV图可以得到,附图2是实施例1,2和3的循环伏安图。实施例1与空白相对比氢气氧化的峰电流是2.3mA/cm2,实施例2与空白相对比氢气氧化的峰电流是2.42mA/cm2,实施例3与空白相对比氢气本文档来自技高网...

【技术保护点】
1.一种纳米氧化钌的制备方法,其特征在于,包括如下步骤:(1)将三氯化钌溶于乙醇配制成三氯化钌乙醇溶液,超声,得到水热溶液;(2)将步骤(1)所得的水热溶液置于高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,升温到水热反应温度,并保温一段时间,反应结束后,冷却至室温,得到粉末状固体,洗涤,干燥,焙烧,得到纳米氧化钌。

【技术特征摘要】
1.一种纳米氧化钌的制备方法,其特征在于,包括如下步骤:(1)将三氯化钌溶于乙醇配制成三氯化钌乙醇溶液,超声,得到水热溶液;(2)将步骤(1)所得的水热溶液置于高压反应釜中,紧固高压反应釜后,再将高压反应釜置于鼓风干燥箱中,升温到水热反应温度,并保温一段时间,反应结束后,冷却至室温,得到粉末状固体,洗涤,干燥,焙烧,得到纳米氧化钌。2.如权利要求1所述的一种纳米氧化钌的制备方法,其特征在于,步骤(1)中,所述三氯化钌乙醇溶液的浓度为0.1~0.4mol/L。3.如权利要求2所述的一种纳米氧化钌的制备方法,其特征在于,三氯化钌乙醇溶液的浓度为0.15~0.3mol/L。4.如权利要求1所述的一种纳米氧化钌的制备方法,其特征在于,步骤(2)中,所述水热反应的温度为150~200℃,保温时间为6~12h,升温速率为5℃/min。5.如权利要求1所述的一种纳米氧化钌的制备方...

【专利技术属性】
技术研发人员:陈松何瑞楠吴彦君史柯
申请(专利权)人:江苏大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1