一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法技术

技术编号:21395984 阅读:33 留言:0更新日期:2019-06-19 06:14
本发明专利技术涉及一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,包括:体积为Qt升的气体样本经过静态悬臂梁前端气路的一段金属气路;上述气体样本中带电细颗粒物在静态悬臂梁自由端上表面的采样区上沉积;静态悬臂梁发生形变,检测隧道电流的大小;所述隧道电流是指流经静态悬臂梁自由端下表面的隧道电流表面上的电流,在隧道电流表面下方设置一个隧尖探针,隧尖探针与隧道电流表面的间距为x;计算出静态悬臂梁上吸附的细颗粒物的质量m,根据多依奇捕获效率η计算出细颗粒物的质量浓度ρ。本发明专利技术中静态悬臂梁的微变形量是通过隧道电流进行检测的,且微型静态悬臂梁均匀布线荷载较小,检测灵敏度较高。

A Method of Fine Particle Mass Concentration Detection Based on Cantilever Tunnel Current

The invention relates to a method for detecting the mass concentration of fine particles based on the current of a cantilever beam tunnel, which includes: a gas sample with a volume of Qt-liter passes through a metal gas path at the front end of a static cantilever beam; the charged fine particles in the gas sample deposit on the sampling area of the upper surface of the free end of the static cantilever beam; the static cantilever beam deforms to detect the magnitude of the tunnel current; The tunnel current refers to the current flowing on the surface of the tunnel current flowing through the lower surface of the free end of the static cantilever beam. A tunnel tip probe is set below the tunnel current surface, and the distance between the tunnel tip probe and the tunnel current surface is X. The mass m of fine particles adsorbed on the static cantilever beam is calculated, and the mass concentration P of fine particles is calculated according to the capture efficiency_. The micro-deformation of the static cantilever beam is detected by tunnel current, and the uniform wiring load of the micro-static cantilever beam is small, and the detection sensitivity is high.

【技术实现步骤摘要】
一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法
本专利技术涉及大气环境检测
,尤其是一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法。
技术介绍
空气中的细颗粒物是指环境空气中空气动力学半径小于2.5um的颗粒物,其中粒径越小,比表面积越大,活性越强,对人体的毒害越大。在大气环境监测方面,现在主要的激光、射线方法,需要使用重量浓度系数把数量浓度换算成质量浓度,尤其在空气颗粒物粒径和浓度较低的情况下,测量较为不准确,甚至失真。随着微纳加工技术的发展,传感器的体积不断减小,但是由于系统的减小,对信号处理、配套的光学和机械系统要求极高。目前运用于空气颗粒物检测的微纳传感器主要运用微纳谐振式传感器,利用吸附在敏感器件上的被测物质质量改变谐振频率的原理,以计算得出被测物质的质量。在空气中细颗粒物检测中,谐振式等动态检测方式存在三个问题:(1)细颗粒物很难牢靠的吸附在敏感元件上,如果敏感元件用较高的振动频率振动会导致颗粒物脱附的问题;(2)想要提高传感器的灵敏度,共振频率一般较高,然而在非真空的环境下的高频振动会导致系统阻尼增大,发热严重,甚至测量结果失真;(3)采样区一般涂有吸附材料,该采样方式使用粘性较强的材料,会导致吸附在传感器上的细颗粒物难以脱附,传感器难以再次利用。
技术实现思路
本专利技术的目的在于提供一种大大提高了测量结果的可靠性、检测灵敏度较高的基于悬臂梁隧道电流的细颗粒物质量浓度检测方法。为实现上述目的,本专利技术采用了以下技术方案:一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,该方法包括下列顺序的步骤:(1)体积为Qt升的气体样本经过静态悬臂梁前端气路的一段金属气路;(2)上述气体样本中带电细颗粒物在静态悬臂梁自由端上表面的采样区上沉积;(3)静态悬臂梁发生形变,检测隧道电流的大小;所述隧道电流是指流经静态悬臂梁自由端下表面的隧道电流表面上的电流,在隧道电流表面下方设置一个隧尖探针,隧尖探针与隧道电流表面的间距为x;(4)计算出静态悬臂梁上吸附的细颗粒物的质量m,根据多依奇捕获效率η计算出细颗粒物的质量浓度ρ。在步骤(1)中,所述金属气路的一端接地,并连接至高压直流电的正极,经过金属气路的空气细颗粒物将会带电。在步骤(2)中,所述采样区是指涂敷在静态悬臂梁自由端上表面的一层金属镀膜,细颗粒物在经过采样区时,会在静电力的作用下驱进并吸附在采样区,该过程满足多依奇捕获效率η:η=1-e-vs/Q其中,S为采样区的面积,Q是气体样本的流量,v是荷电细颗粒物在电场中的驱进速度。在步骤(3)中,所述隧道电流表面是在静态悬臂梁自由端的下表面且与采样区相对应的位置处涂敷的一层金属镀膜,所述间距x为1um,隧道电流表面和隧尖探针二者组成用于检测静态悬臂梁微量形变的隧道电流检测机构,隧道电流的大小I表示为:其中,I为隧道电流;V为隧道电流两端的电压;A为常数,其值为1.025*1010;为隧道结势垒高度,x为隧尖探针与隧道电流表面的间距。所述步骤(4)具体是指:(4a)细颗粒物的质量m与间距x呈反比:m∝(1/x)(4b)隧道电流I与间距x的关系如下:其中,I为隧道电流;V为隧道电流两端的电压;A为常数,其值为1.025*1010;为隧道结势垒高度,x为隧尖探针与隧道电流表面的间距;由(4a)和(4b)可知:该空气中的细颗粒物的质量浓度ρ为:其中,ρ为细颗粒物的质量浓度。由上述技术方案可知,本专利技术的有益效果为:第一,本专利技术的检测原理是利用被测物质的重力作用改变悬臂梁的形状,是一种“直接称重”的检测方式进行测量质量浓度,减少了在低浓度低粒径下“重量浓度系数”带来的巨大测量误差和不稳定性,大大提高了测量结果的可靠性;第二,本专利技术中静态悬臂梁的微变形量是通过隧道电流进行检测的,且微型静态悬臂梁均匀布线荷载较小,所以检测灵敏度较高;第三,本专利技术是静电吸附,无需高频谐振,免去了脱附的问题,另外,在检测完成后以通过气流牵引的方式将悬臂梁上的细颗粒物吹走,实现传感器的再生利用,具有更好的经济性。附图说明图1是静电吸附的示意图。图2是静态悬臂梁的侧截面示意图。图3是检测流程示意图。具体实施方式如图1、2所示,一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,该方法包括下列顺序的步骤:(1)体积为Qt升的气体样本经过静态悬臂梁3前端气路的一段金属气路;(2)上述气体样本中带电细颗粒物11在静态悬臂梁3自由端上表面的采样区2上沉积;(3)静态悬臂梁3发生形变,检测隧道电流的大小;所述隧道电流是指流经静态悬臂梁3自由端下表面的隧道电流表面上的电流,在隧道电流表面下方设置一个隧尖探针6,隧尖探针6与隧道电流表面的间距为x;(4)计算出静态悬臂梁3上吸附的细颗粒物的质量m,根据多依奇捕获效率η计算出细颗粒物的质量浓度ρ。如图1、2所示,在步骤(1)中,所述金属气路的一端接地,并连接至高压直流电的正极,经过金属气路的空气细颗粒物将会带电。图1中的附图标记1为金属气路的内壁,图2中的附图标记4为基底。如图1、2所示,在步骤(2)中,所述采样区2是指涂敷在静态悬臂梁3自由端上表面的一层金属镀膜5,细颗粒物在经过采样区2时,会在静电力的作用下驱进并吸附在采样区2,该过程满足多依奇捕获效率η:η=1-e-vS/Q其中,S为采样区2的面积,Q是气体样本的流量,v是荷电细颗粒物在电场中的驱进速度。如图1、2所示,在步骤(3)中,所述隧道电流表面是在静态悬臂梁3自由端的下表面且与采样区2相对应的位置处涂敷的一层金属镀膜5,所述间距x为1um,隧道电流表面和隧尖探针6二者组成用于检测静态悬臂梁3微量形变的隧道电流检测机构,隧道电流的大小I表示为:其中,I为隧道电流;V为隧道电流两端的电压;A为常数,其值为1.025*1010;为隧道结势垒高度,x为隧尖探针6与隧道电流表面的间距。如图3所示,含有细颗粒物的气体样本在经过前序的预处理后,再经过金属气管使细颗粒物带电,在静电力的作用下驱进并吸附在静态悬臂梁3的采样区2,引起微型静态悬臂梁3发生形变,改变隧尖探针6和隧道电流表面的间距x,进而检测隧道电流的变化,由于:(4a)细颗粒物的质量m与间距x呈反比:m∝(1/x)(4b)隧道电流I与间距x的关系如下:其中,I为隧道电流;V为隧道电流两端的电压;A为常数,其值为1.025*1010;为隧道结势垒高度,x为隧尖探针6与隧道电流表面的间距。由(4a)和(4b)可知:该空气中的细颗粒物的质量浓度ρ为:其中,ρ为细颗粒物的质量浓度。下表是所用检测系统各部分的参数:表1:表2:表3:综上所述,本专利技术的检测原理是利用被测物质的重力作用改变悬臂梁3的形状,是一种“直接称重”的检测方式进行测量质量浓度,减少了在低浓度低粒径下“重量浓度系数”带来的巨大测量误差和不稳定性,大大提高了测量结果的可靠性;本专利技术中静态悬臂梁3的微变形量是通过隧道电流进行检测的,且微型静态悬臂梁3均匀布线荷载较小,所以检测灵敏度较高;本专利技术是静电吸附,无需高频谐振,免去了脱附的问题,另外,在检测完成后以通过气流牵引的方式将悬臂梁3上的细颗粒物吹走,实现传感器的再生利用,具有更好的经济性。本文档来自技高网...

【技术保护点】
1.一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,其特征在于:该方法包括下列顺序的步骤:(1)体积为Qt升的气体样本经过静态悬臂梁前端气路的一段金属气路;(2)上述气体样本中带电细颗粒物在静态悬臂梁自由端上表面的采样区上沉积;(3)静态悬臂梁发生形变,检测隧道电流的大小;所述隧道电流是指流经静态悬臂梁自由端下表面的隧道电流表面上的电流,在隧道电流表面下方设置一个隧尖探针,隧尖探针与隧道电流表面的间距为x;(4)计算出静态悬臂梁上吸附的细颗粒物的质量m,根据多依奇捕获效率η计算出细颗粒物的质量浓度ρ。

【技术特征摘要】
1.一种基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,其特征在于:该方法包括下列顺序的步骤:(1)体积为Qt升的气体样本经过静态悬臂梁前端气路的一段金属气路;(2)上述气体样本中带电细颗粒物在静态悬臂梁自由端上表面的采样区上沉积;(3)静态悬臂梁发生形变,检测隧道电流的大小;所述隧道电流是指流经静态悬臂梁自由端下表面的隧道电流表面上的电流,在隧道电流表面下方设置一个隧尖探针,隧尖探针与隧道电流表面的间距为x;(4)计算出静态悬臂梁上吸附的细颗粒物的质量m,根据多依奇捕获效率η计算出细颗粒物的质量浓度ρ。2.根据权利要求1所述的基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,其特征在于:在步骤(1)中,所述金属气路的一端接地,并连接至高压直流电的正极,经过金属气路的空气细颗粒物将会带电。3.根据权利要求1所述的基于悬臂梁隧道电流的细颗粒物质量浓度检测方法,其特征在于:在步骤(2)中,所述采样区是指涂敷在静态悬臂梁自由端上表面的一层金属镀膜,细颗粒物在经过采样区时,会在静电力的作用下驱进并吸附在采样区,该过程满足多依奇捕获效率η:η=1-e-...

【专利技术属性】
技术研发人员:许锋王焕钦陈大仁孔德义虞发军
申请(专利权)人:中国科学院合肥物质科学研究院
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1