一种温度自适应的光纤声发射系统及监测方法技术方案

技术编号:21198045 阅读:20 留言:0更新日期:2019-05-25 00:45
本发明专利技术公开了一种温度自适应的光纤声发射系统及监测方法,利用可调谐窄带激光器和光电探测器作为光电转换装置、利用波长测量模块实时跟踪光纤布拉格光栅的中心波长,结合声发射采集卡和前置放大器建立了一种监测固体结构变温损伤破坏过程的光纤声发射系统。该系统具有微秒级响应速度,可以准确监测狭小空间内的固体结构损伤破坏失效过程。

A Temperature-adaptive Fiber-optic Acoustic Emission System and Monitoring Method

The invention discloses a temperature-adaptive optical fiber acoustic emission system and a monitoring method. The tunable narrow-band laser and photodetector are used as photoelectric conversion devices, the wavelength measurement module is used to track the central wavelength of the fiber Bragg grating in real time, and a kind of optical fiber acoustic emission (FAE) is established to monitor the damage process of the solid structure at variable temperature by combining the acoustic emission acquisition card and the preamplifier. System. The system has microsecond response speed and can accurately monitor the damage and failure process of solid structures in narrow space.

【技术实现步骤摘要】
一种温度自适应的光纤声发射系统及监测方法
本专利技术涉及材料性能测试
,具体涉及一种适用于狭小空间、温度自适应的光纤声发射系统及其监测方法。
技术介绍
采用声发射系统可以获得固体结构变温条件下的损伤、破坏或失效信息,现有的声发射系统采用压电材料作为传感器,探头体积大,不能安装在狭缝空间。光纤传感器因体积纤细、柔韧,能够安装在狭缝空间,已有相关文献建立了光纤声发射系统,但是绝大部分系统因传感原理受温度限制而不能应用于变温试验中。
技术实现思路
为了克服上述技术缺陷,本专利技术提供了一种温度自适应的光纤声发射系统及监测方法,该系统具有微秒级响应速度,可以准确监测狭小空间内的固体结构损伤破坏失效过程。为了达到上述技术效果,本专利技术提供了如下技术方案:一种温度自适应的光纤声发射系统,包括光纤声发射传感器、波长测量模块、光电装换装置、信号采集处理器和计算机;所述光纤发射传感器为光纤布拉格光栅,所述光电转换装置由可调谐窄带光源和光电探测器组成,所述光纤布拉格光纤与可调谐窄带激光器、波长测量模块和光电探测器之间分别通过光纤连接,所述光电探测器通过信号线与信号采集处理器连接,所述波长测量模块和所述可调谐窄带光源分别与计算机连接。进一步的技术方案为,所述光纤声发射传感器与所述可调谐窄带光源和光电探测器之间设置有光纤环形器。进一步的技术方案为,所述信号采集处理器由前置放大器和声发射采集卡组成,所述光电探测器通过信号线首先与前置放大器连接,然后前置放大器通过信号线与声发射采集卡连接,所述声发射采集卡与计算机连接。进一步的技术方案为,所述光纤声发射传感器是无涂覆层、长度在9~11mm范围内的光纤布拉格光纤。进一步的技术方案为,所述光纤布拉格光纤的线性区>80pm反射率≥80%。进一步的技术方案为,所述波长测量模块内置宽谱光源,波长范围为1520~1570nm,功率小于1mW。进一步的技术方案为,所述可调谐窄带光源的波长可以连续调谐,调谐范围为1520nm~1570nm,精度≤50pm,宽度≤10pm,功率≥5mW的光源。本专利技术还提供了一种利用上述的光纤声发射系统进行固体材料温度冲击损伤的监测方法,该方法包括以下步骤:(1)光源参数设置:利用波长测量模块测量光纤布拉格光栅的中心波长,根据测量的光谱特征设置可调谐窄带激光器的波长和输出能量;(2)标定方法:以光纤布拉格光栅为中心,利用断铅法在固体材料表面不同方向上产生声压信号,结合压电谐振式声发射传感器对光纤布拉格光栅声发射传感器进行标定,获得光纤布拉格光栅在固体材料表面不同方向上断铅法释放能量的幅值;(3)固体材料温度冲击破坏的监测方法:将光纤布拉格光栅粘贴在固体材料表面,调整光源初始波长,对固体材料进行温度冲击,同步启动运行光纤声发射系统,在固体材料破坏结束后停止光纤声发射系统。进一步的技术方案为,在步骤(1)中,所述根据测量的光谱特征设置可调谐窄带激光器的波长和输出能量是设置可调谐窄带激光器发射的光源光谱线宽<光纤布拉格光栅线性区宽度的1/4、中心波长在光纤布拉格光栅反射光谱的线性区内,并且可调谐窄带激光器发射的光源光谱中心波长幅值>光纤布拉格光栅的中心波长幅值。进一步的技术方案为,温度冲击固体材料过程中,粘贴在固体材料表面的光纤布拉格光栅中心波长会改变,波长测量模块能自动实时追踪测量到光纤布拉格光栅的中心波长,并将测量的中心波长值通过计算机赋值到可调谐窄带光源,光源就能够自动适应温度的变化,从而实现温度自适应的声发射监测功能,可调谐窄带光源的中心波长能够通过计算机将波长测量模块t1时刻追踪的光纤布拉格光栅中心波长λB(t1)与波长偏移量λb调整为λL(t2),调整法则为λL(t2)=λB(t1)+λb,或λL(t2)=λB(t1)-λb,其中t2-t1>50μs。下面对本专利技术进行进一步的说明,该装置中的波长测量模块用于实时测量光纤声发射传感器的中心波长λB,内置宽谱光源,波长范围为1520~1570nm,功率小于1mW,利用光纤布拉格光栅作为光纤声发射传感器,其反射光谱是一个圆弧形波峰,λB为中心波长,波峰值的一半对应的光谱宽度为2λb,计算机通过波长测量模块获得时间t1时的λB(t1),本系统中该光源通过环形器入射到光纤声发射传感器,波长值λL(t2)通过计算机获得的λB(t1)进行赋值,使λL(t2)=λB(t1)+λb,或λL(t2)=λB(t1)-λb,t2-t1>50μs且越接近50μs越好,表明光源波长与光纤声发射传感器波长响应一致,且能区分20kHz(1/50μs)以上的声发射信号,本申请中的环形器具有三个端口,分别为①端口、②端口、③端口,这三个端口实现光的单向传输功能,即①端口→②端口→③端口,其中,①端口到②端口光损耗越小越好,①端口到③端口光强为0;②端口到①端口光强越小越好,②端口到③端口光损耗越小越好;③端口到②端口光强越小越好,③端口到①端口光强为0。本申请中的光电探测器灵敏度越高越好,将声发射光强信号转换成模拟电压信号。本系统中光电探测器通过环形器接收光纤声发射传感器反射的总光强I,总光强I包含波长测量模块内置宽带光源光强IW和可调谐窄带光源光强IN两部分,因后者远大于前者,所以可以认为总光强I接近于IN,其中宽带光源光强IW很小,不显示,本申请中前置放大器用于接收模拟电压信号,并将其放大,声发射采集卡用于采集前置放大器放大的声发射信号,输入到电脑。本专利技术与现有技术相比,具有如下有益效果:温度冲击固体材料过程中,粘贴在固体结构表面的光纤布拉格光栅中心波长会改变,波长测量模块能自动实时追踪测量到光纤布拉格光栅的中心波长,并将测量的中心波长值通过计算机赋值到可调谐窄带光源,可调谐窄带光源获得的波长值能够与温度变化引起的光纤布拉格光栅匹配,从而实现温度自适应的声发射监测功能。本专利技术提供一种将光纤布拉格光栅作为声发射传感器,利用可调谐窄带激光器和光电探测器作为光电转换装置、利用波长测量模块实时跟踪光纤布拉格光栅的中心波长,结合声发射采集卡和前置放大器建立了一种监测固体结构变温损伤破坏过程的光纤声发射系统。该系统具有微秒级响应速度,可以准确监测狭小空间内的固体结构损伤破坏失效过程。附图说明图1为本专利技术的光纤声发射系统整体结构示意图;图2为本专利技术光纤声发射传感器反射光谱示意图;图3为本系统中到达光电探测器的光谱示意图。具体实施方式实施例1一种如图1所示的一种温度自适应的光纤声发射系统,包括光纤声发射传感器、波长测量模块、光电装换装置、信号采集处理器和计算机;所述光纤发射传感器为光纤布拉格光栅,所述光电转换装置由可调谐窄带光源和光电探测器组成,所述光纤布拉格光纤与可调谐窄带激光器、波长测量模块和光电探测器之间分别通过光纤连接,所述光电探测器通过信号线与信号采集处理器连接,所述波长测量模块和所述可调谐窄带光源分别与计算机连接,所述光纤声发射传感器与所述可调谐窄带光源和光电探测器之间设置有光纤环形器。其中环形器具有三个端口,①端口到②端口光损耗越小越好,①端口到③端口光强为0;②端口到①端口光强越小越好,②端口到③端口光损耗越小越好;③端口到②端口光强越小越好,③端口到①端口光强为0。本系统中光电探测器通过环形器接收光纤声发射传感器反射的总光本文档来自技高网...

【技术保护点】
1.一种温度自适应的光纤声发射系统,其特征在于,包括光纤声发射传感器、波长测量模块、光电装换装置、信号采集处理器和计算机;所述光纤发射传感器为光纤布拉格光栅,所述光电转换装置由可调谐窄带光源和光电探测器组成,所述光纤布拉格光纤与可调谐窄带激光器、波长测量模块和光电探测器之间分别通过光纤连接,所述光电探测器通过信号线与信号采集处理器连接,所述波长测量模块和所述可调谐窄带光源分别与计算机连接。

【技术特征摘要】
1.一种温度自适应的光纤声发射系统,其特征在于,包括光纤声发射传感器、波长测量模块、光电装换装置、信号采集处理器和计算机;所述光纤发射传感器为光纤布拉格光栅,所述光电转换装置由可调谐窄带光源和光电探测器组成,所述光纤布拉格光纤与可调谐窄带激光器、波长测量模块和光电探测器之间分别通过光纤连接,所述光电探测器通过信号线与信号采集处理器连接,所述波长测量模块和所述可调谐窄带光源分别与计算机连接。2.根据权利要求1所述的温度自适应的光纤声发射系统,其特征在于,所述光纤声发射传感器与所述可调谐窄带光源和光电探测器之间设置有光纤环形器。3.根据权利要求1所述的温度自适应的光纤声发射系统,其特征在于,所述信号采集处理器由前置放大器和声发射采集卡组成,所述光电探测器通过信号线首先与前置放大器连接,然后前置放大器通过信号线与声发射采集卡连接,所述声发射采集卡与计算机连接。4.根据权利要求1所述的温度自适应的光纤声发射系统,其特征在于,所述光纤声发射传感器是无涂覆层、长度在9~11mm范围内的光纤布拉格光纤。5.根据权利要求4所述的温度自适应的光纤声发射系统,其特征在于,所述光纤布拉格光纤的线性区>80pm反射率≥80%。6.根据权利要求1所述的温度自适应的光纤声发射系统,其特征在于,所述波长测量模块内置宽谱光源,波长范围为1520~1570nm,功率小于1mW。7.根据权利要求1所述的温度自适应的光纤声发射系统,其特征在于,所述可调谐窄带光源的波长可以连续调谐,调谐范围为1520nm~1570nm,精度≤50pm,宽度≤10pm,功率≥5mW的光源。8.一种利用权利要求1~7任意一项所述的光纤声发射系统进行固体材料温度冲击破坏的监测方法,其特...

【专利技术属性】
技术研发人员:付涛田昕周红萍温茂萍梁晓辉邱芷薇
申请(专利权)人:中国工程物理研究院化工材料研究所
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1