当前位置: 首页 > 专利查询>清华大学专利>正文

一种电力系统负荷模型辨识参数向低压节点等效的方法技术方案

技术编号:21038419 阅读:52 留言:0更新日期:2019-05-04 07:32
本发明专利技术涉及一种电力系统负荷辨识参数向低压节点等效的方法,属于电力系统负荷模型参数辨识领域。本发明专利技术方法将从高电压等级节点基于类噪声信号辨识得到的负荷模型参数出发,利用电网网络拓扑结构计算该节点至下属各低压节点的总传输电抗;将各支路传输电抗依照电压不变的原则分配给静负荷和电动机支路;将串入静负荷支路的传输电抗进行向高压节点的并联等效,并将串入电动机支路的传输电抗归入电动机模型中再进行并联等效;将等效静负荷中的并联电抗部分归入并联等效得到的新电动机模型;利用辨识参数与等效参数对应相等列解方程,得到低压节点的负荷模型参数折算结果。

An Equivalent Method for Identifying Load Model Parameters of Power System to Low Voltage Nodes

【技术实现步骤摘要】
一种电力系统负荷模型辨识参数向低压节点等效的方法
本专利技术涉及一种电力系统负荷模型辨识参数向低压节点等效的方法,属于电力系统负荷模型参数辨识

技术介绍
随着同步相量测量技术(PMU)的快速发展,目前电网中大多数500kV站点都已布点PMU装置。利用站点变压器高压侧的电压幅值、相角和功率量测,通过基于类噪声信号的负荷模型参数辨识方法可以得到500kV站点下以恒阻抗+电动机模型表征的动、静负荷的各参数。考虑到实际系统仿真中,负荷模型通过220kV及其以下电压等级接入,500kV站点下负荷辨识参数的指导意义十分有限。为此,需要得到更具应用价值的低电压等级下的负荷模型参数。目前,因为只有少数220kV节点布置了PMU装置,通过直接辨识的方法得到低压节点下的负荷模型参数难以实现。根据500kV站点PMU量测数据辨识得到高电压等级的负荷模型参数,同时,高压站点至低压站点的网络拓扑容易得到,若能结合网络拓扑结构、参数,分析同一高压站点下各低压站点等效负荷间以及其与联结阻抗间的串并联关系,对传输网络进行化简,将可以在得到高压站点负荷模型参数辨识结果的基础上完成向低压站点负荷模型参数等效的折算过程。
技术实现思路
本专利技术的目的是提出一种电力系统负荷模型辨识参数向低压节点等效的方法,以解决已有技术中,电力系统中低压节点下的负荷模型参数由于缺乏同步向量测量单元布点而难以直接辨识的问题。本专利技术提出的电力系统负荷模型辨识参数向低压节点等效的方法,包括以下步骤:(1)设定电力系统中的高压节点下的恒阻抗ZH与电动机负荷MH并联,并设定电力系统中的低压节点下的恒阻抗ZL与电动机负荷ML并联;(2)采用基于类噪声信号的负荷模型参数辨识方法,对电力系统中同步相量测量单元的高压节点的电压幅值、相角和功率曲线进行参数辨识,得到高压节点的负荷模型参数,包括电动机转子开路电抗XH、电动机转子暂态电抗X’H、电动机转子开路时间常数Td0_H、恒阻抗ZH中的静负荷电阻RH和动静负荷比pct;(3)根据电力系统的功率基值SB、高压节点所在电压等级的电压基值UB1和低压节点所在电压等级的电压基值UB2,得到高压节点到多个低压节点之间的各变压器的漏抗标么值和各变压器低压侧至低压节点的传输线路的电抗标么值,将漏抗标么值和传输线路的电抗标么值相加,得到高压节点至各低压节点的支路传输电抗Xd,d=1、2、…、n,n为高压节点至低压节点的支路数;(4)根据步骤(2)中的动静负荷比pct,对步骤(3)的支路传输电抗Xd进行分解,得到低压节点下恒阻抗ZL所在支路的电抗Xdz和电动机负荷ML所在支路的电抗Xdm,遍历高压节点至各低压节点的所有支路,重复本步骤,得到所有低压节点下的电抗Xdz和电抗Xdm;(5)使步骤(4)中的低压节点下恒阻抗ZL中的静负荷电阻RL与恒阻抗ZL所在支路的电抗Xdz成为并联形式,实现串并联等效,得到互相并联的电阻RLb和电抗Xdz_b,重复本步骤,实现n条支路的串并联等效,使并联后的所有n条支路的电阻RLb并联,使并联后的所有n条支路的电抗Xdz_b并联,得到高压节点下的恒阻抗ZH,该恒阻抗ZH的电阻记为RH,恒阻抗ZH的电抗记为Xb,RH即为高压节点负荷模型中的静负荷电阻参数;(6)将步骤(4)中的电动机负荷ML所在支路的电抗Xdm归入原低压侧电动机ML中,得到一个电动机模型ML’,在该电动机模型ML’中,电动机的转子开路电抗XLM为原低压侧电动机ML的开路电抗XL加上Xdm,电动机的转子暂态电抗XLM’为原低压侧电动机ML的暂态电抗X’L加上Xdm,低压侧电动机ML的转子开路时间常数不变,为Td0_L,将n台电动机模型ML’并联等效成一台电动机模型MH’:该电动机MH’的转子开路电抗X为n台电动机模型ML’转子开路电抗的并联值,该电动机MH’的转子暂态电抗X’为n台电动机模型ML’转子暂态电抗的并联值,该电动机MH’的转子开路时间常数Td0为n台电动机模型ML’转子开路时间常数的算术平均值;(7)将步骤(5)等效得到的高压节点下恒阻抗ZH的电抗Xb归入步骤(6)的电动机模型MH’中,利用下式,计算得到高压节点下的电动机模型如下:其中,XH、X’H和Td0_H为待求量,XH、X’H和Td0_H分别表示高压节点下负荷模型中的转子开路电抗、转子暂态电抗和转子开路时间常数,Xb为步骤(5)中恒阻抗ZH的电抗,X、X’和Td0分别为步骤(6)中电动机MH’的转子开路电抗、转子暂态电抗和转子开路时间常数。(8)设定各低压节点下负荷模型参数互相一致,将低压节点下负荷模型参数的电动机转子开路电抗记为XL,电动机转子暂态电抗记为X’L,电动机转子开路时间常数记为Td0_L,恒阻抗中的静负荷电阻记为RL,将XL、X’L、Td0_L和RL作为未知量,重复步骤(3)至步骤(7),得到用未知量XL、X’L、Td0_L和RL表示的高压节点模型参数表达式,该高压节点模型参数表达式的数量与未知量XL、X’L、Td0_L和RL的数量相等,令各高压节点模型参数表达式分别等于步骤(2)中的各辨识参数,得到与未知量XL、X’L、Td0_L和RL的数量相等的多个方程构成的方程组,求解该方程组,得到低压节点下的负荷模型参数,实现电力系统负荷模型辨识参数向低压节点的等效过程。本专利技术提出的一种电力系统负荷模型辨识参数向低压节点等效的方法,其优点是:本专利技术方法考虑到电力系统中负荷模型通过220kV及以下电压等级接入,使220kV低压节点下的负荷模型参数较500kV高压节点下的负荷模型参数更具实际应用价值。本专利技术解决了电力系统中低压节点下的负荷模型参数由于缺乏同步向量测量单元布点而难以直接辨识的问题,通过简单、有效的网络拓扑结构化简,实现了电力系统中高压节点下的负荷模型辨识参数向低压节点的等效过程,建立了更具指导意义的电力系统负荷模型。由于大多数500kV高压节点布置了同步向量测量单元,高压节点下的负荷模型辨识参数容易直接辨识得到,因此本专利技术的可行性较高;又由于本专利技术考虑到高压节点至低压节点之间的网络拓扑可以针对具体实施例进行替换,因此本专利技术方法具有广泛的适用性。附图说明图1为本专利技术方法涉及的电力系统中高压节点至低压节点的连接关系示意图。具体实施方式本专利技术提出的电力系统负荷模型辨识参数向低压节点等效的方法,其涉及的电力系统中高压节点至低压节点的连接关系示意图如图1所述,包括以下步骤:(1)设定电力系统中的高压节点下的恒阻抗ZH与电动机负荷MH并联,并设定电力系统中的低压节点下的恒阻抗ZL与电动机负荷ML并联;(2)采用基于类噪声信号的负荷模型参数辨识方法,该方法可参见张欣然.基于广域类噪声信息的电力系统负荷模型辨识研究[D],清华大学,2016,对电力系统中同步相量测量单元的高压节点的电压幅值、相角和功率曲线进行参数辨识,得到高压节点的负荷模型参数,包括电动机转子开路电抗XH、电动机转子暂态电抗X’H、电动机转子开路时间常数Td0_H、恒阻抗ZH中的静负荷电阻RH和动静负荷比pct;(3)根据电力系统的功率基值SB、高压节点所在电压等级的电压基值UB1和低压节点所在电压等级的电压基值UB2,得到高压节点到多个低压节点之间的各变压器的漏抗标么值和各变压器低压侧至低压节点的本文档来自技高网...

【技术保护点】
1.一种电力系统负荷模型辨识参数向低压节点等效的方法,其特征在于该方法包括以下步骤:(1)设定电力系统中的高压节点下的恒阻抗ZH与电动机负荷MH并联,并设定电力系统中的低压节点下的恒阻抗ZL与电动机负荷ML并联;(2)采用基于类噪声信号的负荷模型参数辨识方法,对电力系统中同步相量测量单元的高压节点的电压幅值、相角和功率曲线进行参数辨识,得到高压节点的负荷模型参数,包括电动机转子开路电抗XH、电动机转子暂态电抗X’H、电动机转子开路时间常数Td0_H、恒阻抗ZH中的静负荷电阻RH和动静负荷比pct;(3)根据电力系统的功率基值SB、高压节点所在电压等级的电压基值UB1和低压节点所在电压等级的电压基值UB2,得到高压节点到多个低压节点之间的各变压器的漏抗标么值和各变压器低压侧至低压节点的传输线路的电抗标么值,将漏抗标么值和传输线路的电抗标么值相加,得到高压节点至各低压节点的支路传输电抗Xd,d=1、2、…、n,n为高压节点至低压节点的支路数;(4)根据步骤(2)中的动静负荷比pct,对步骤(3)的支路传输电抗Xd进行分解,得到低压节点下恒阻抗ZL所在支路的电抗Xdz和电动机负荷ML所在支路的电抗Xdm,遍历高压节点至各低压节点的所有支路,重复本步骤,得到所有低压节点下的电抗Xdz和电抗Xdm;(5)使步骤(4)中的低压节点下恒阻抗ZL中的静负荷电阻RL与恒阻抗ZL所在支路的电抗Xdz成为并联形式,实现串并联等效,得到互相并联的电阻RLb和电抗Xdz_b,重复本步骤,实现n条支路的串并联等效,使并联后的所有n条支路的电阻RLb并联,使并联后的所有n条支路的电抗Xdz_b并联,得到高压节点下的恒阻抗ZH,该恒阻抗ZH的电阻记为RH,恒阻抗ZH的电抗记为Xb,RH即为高压节点负荷模型中的静负荷电阻参数;(6)将步骤(4)中的电动机负荷ML所在支路的电抗Xdm归入原低压侧电动机ML中,得到一个电动机模型ML’,在该电动机模型ML’中,电动机的转子开路电抗XLM为原低压侧电动机ML的开路电抗XL加上Xdm,电动机的转子暂态电抗XLM’为原低压侧电动机ML的暂态电抗X’L加上Xdm,低压侧电动机ML的转子开路时间常数不变,为Td0_L,将n台电动机模型ML’并联等效成一台电动机模型MH’:该电动机MH’的转子开路电抗X为n台电动机模型ML’转子开路电抗的并联值,该电动机MH’的转子暂态电抗X’为n台电动机模型ML’转子暂态电抗的并联值,该电动机MH’的转子开路时间常数Td0为n台电动机模型ML’转子开路时间常数的算术平均值;(7)将步骤(5)等效得到的高压节点下恒阻抗ZH的电抗Xb归入步骤(6)的电动机模型MH’中,利用下式,计算得到高压节点下的电动机模型如下:...

【技术特征摘要】
1.一种电力系统负荷模型辨识参数向低压节点等效的方法,其特征在于该方法包括以下步骤:(1)设定电力系统中的高压节点下的恒阻抗ZH与电动机负荷MH并联,并设定电力系统中的低压节点下的恒阻抗ZL与电动机负荷ML并联;(2)采用基于类噪声信号的负荷模型参数辨识方法,对电力系统中同步相量测量单元的高压节点的电压幅值、相角和功率曲线进行参数辨识,得到高压节点的负荷模型参数,包括电动机转子开路电抗XH、电动机转子暂态电抗X’H、电动机转子开路时间常数Td0_H、恒阻抗ZH中的静负荷电阻RH和动静负荷比pct;(3)根据电力系统的功率基值SB、高压节点所在电压等级的电压基值UB1和低压节点所在电压等级的电压基值UB2,得到高压节点到多个低压节点之间的各变压器的漏抗标么值和各变压器低压侧至低压节点的传输线路的电抗标么值,将漏抗标么值和传输线路的电抗标么值相加,得到高压节点至各低压节点的支路传输电抗Xd,d=1、2、…、n,n为高压节点至低压节点的支路数;(4)根据步骤(2)中的动静负荷比pct,对步骤(3)的支路传输电抗Xd进行分解,得到低压节点下恒阻抗ZL所在支路的电抗Xdz和电动机负荷ML所在支路的电抗Xdm,遍历高压节点至各低压节点的所有支路,重复本步骤,得到所有低压节点下的电抗Xdz和电抗Xdm;(5)使步骤(4)中的低压节点下恒阻抗ZL中的静负荷电阻RL与恒阻抗ZL所在支路的电抗Xdz成为并联形式,实现串并联等效,得到互相并联的电阻RLb和电抗Xdz_b,重复本步骤,实现n条支路的串并联等效,使并联后的所有n条支路的电阻RLb并联,使并联后的所有n条支路的电抗Xdz_b并联,得到高压节点下的恒阻抗ZH,该恒阻抗ZH的电阻记为RH,恒阻抗ZH的电抗记为Xb,RH即为高压节点负荷模型中的静负荷电阻参数;(6)将步骤(4)中的电动机负荷ML所在支路的电抗Xdm归入原低压侧电动机ML中,得...

【专利技术属性】
技术研发人员:吴沛萱王颖陆超苏寅生黄河刘映尚
申请(专利权)人:清华大学中国南方电网有限责任公司
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1