当前位置: 首页 > 专利查询>厦门大学专利>正文

一种多通道并联的三动力组合发动机设计方法技术

技术编号:20944672 阅读:37 留言:0更新日期:2019-04-24 02:28
一种多通道并联的三动力组合发动机设计方法,属于组合发动机领域,包括以下步骤:1)根据飞行任务制定总体性能要求,确定进气道捕获面积并通过流线追踪得到三维内转进气道;2)计算超燃燃烧室进出口参数,设计超燃通道和超燃燃烧室;3)设计尾喷管上型面及下调节板;4)根据Ma0~2阶段发动机流量需求,在三维内转进气道两侧壁面开口布置涡轮通道、涡轮发动机和涡轮通道分流板;5)基于Ma2~3火箭发动机工作与Ma3~4.5亚燃燃烧室工作状态的推力需求,计算引射火箭‑亚燃通道最大流量需求,从而布置引射火箭‑亚燃通道的进口、相应大小的火箭发动机和引射火箭‑亚燃通道分流板。本发明专利技术可满足有效跨越推力鸿沟的同时提供较高的低速爬升和高速巡航性能。

A Design Method of Multi-Channel Parallel Three-Power Combination Engine

A design method of three-power combined engine with multi-channel parallel connection belongs to the field of combined engine, which includes the following steps: 1) determining the capture area of the intake port according to the overall performance requirements of the flight mission, and obtaining the three-dimensional internal-rotating intake port through streamline tracking; 2) calculating the inlet and outlet parameters of the supersonic combustor, designing the supersonic channel and the supersonic combustor; 3) designing the upper surface of the exhaust nozzle and 3) designing the supersonic combustor (4) According to the flow demand of Ma0-2 stage engine, the turbine channel, turbine engine and turbine channel shunt plate are arranged at the opening of the two sides of the three-dimensional internal-rotating intake port; 5) Based on the thrust demand of Ma2-3 rocket engine and Ma3-4.5 sub-combustor, the maximum flow demand of the ejector rocket sub-combustor is calculated, and the ejector rocket sub-combustor is arranged accordingly. The inlet of channel, rocket engine and ejector rocket of corresponding size, Sub-combustion channel shunt plate. The invention can satisfy the requirements of effectively crossing the thrust gap and at the same time provide high low-speed climbing and high-speed cruising performance.

【技术实现步骤摘要】
一种多通道并联的三动力组合发动机设计方法
本专利技术涉及组合发动机领域,尤其涉及一种多通道并联的三动力组合发动机设计方法。
技术介绍
一个世纪以来,人们在飞的“更高、更快、更远”的理想下,推动了高超声速飞行器的发展。早在20世纪70年代初期就出现了马赫数3的高空侦察机,而到了70年代中期马赫数2的民航客机就开始往返于欧美大陆,近年来,美国、欧盟、俄罗斯、日本等国家及国际组织都在加速推进各种高超声速飞行技术研究项目,旨在追求地面起飞、跨速域(Ma0~6+)、重复使用的高超声速飞行器。现有航空航天动力主要为涡轮、冲压和火箭发动机,其中涡轮发动机的最佳工作范围Ma0~2.5,Ma3~5是亚燃冲压发动机较为有利的工作范围,超燃冲压发动机的工作范围Ma5~8,火箭发动机虽然可以全速域工作,但效率最低。经过多年的发展和创新,通过组合现有成熟动力装置形成组合动力,能够支撑高超声速飞行的技术方案众多,在美国2030年吸气式推进技术发展规划中,TBCC、RBCC组合循环发动机占用重要席位,并且是进入空间的最有发展前景的动力技术,目前绝大部分公开的Ma5~6级高超声速飞机方案中,涡轮基组合动力(TBCC)是主流的动力方案,TBCC是以涡轮发动机为基础,集成冲压发动机、火箭发动机等动力形式,科学组合形成的宽速域高超声速动力系统。技术角度而言,实现高超声速飞行的核心在于组合动力技术,比较发现目前国内在组合发动机领域还存在以下主要问题:1、多通道组合动力的推力陷阱,涡轮发动机和冲压发动机工作速域范围目前还存在空档,难以实现推力衔接的问题,而利用引射火箭动力填补转级推力不足是目前比较合理的方案;2、目前国内在双模态燃烧的转换和控制方面基础还较为薄弱,实现双模态工作依然面临较大考验,离工程实践较远;3、目前国内大部分的组合发动机方案都采用双通道形式,因而分配到各通道的工作压力较高,例如冲压发动机要在满足燃烧室入口速度要求的前提下同时保持自起动能力、涡轮在低速状态存在推力不足情况。
技术实现思路
本专利技术的目的在于解决现有技术中的上述问题,提供一种多通道并联的三动力组合发动机设计方法,可在设计技术难度及结构复杂度不高的条件下实现跨速域的工作,满足有效跨越推力鸿沟的同时提供较高的低速爬升和高速巡航性能。本专利技术将引射火箭-亚燃通道、两个涡轮通道与超燃通道四个通道并联布置,上通道为引射火箭与亚燃燃烧室串联的组合形式(以下简称“引射火箭-亚燃通道”),下通道为超燃燃烧室(以下简称“超燃通道”),左右通道均为涡轮发动机(以下简称“涡轮通道”),上述四通道共用一个三维内转进气道和尾喷管从而组成四通道三动力组合发动机。本专利技术无需复杂的匹配设计,可最大限度降低各动力之间相互影响并满足推力平衡问题。为达到上述目的,本专利技术采用如下技术方案:一种多通道并联的三动力组合发动机设计方法,包括以下步骤:1)根据飞行任务制定总体性能要求,基于总体性能要求设计基本流场,确定进气道捕获面积,进而在基本流场中通过流线追踪得到三维内转进气道;2)基于步骤1)三维内转进气道的出口面积,根据发动机总体性能计算超燃燃烧室进出口参数,进而设计超燃通道和超燃燃烧室;3)基于步骤2)超燃燃烧室出口参数,根据发动机总体性能设计尾喷管上型面及下调节板;4)根据Ma0~2阶段发动机流量需求,利用流量公式计算两个涡轮通道入口面积,其中,q表示流量,K为气动常数,p*为总压,T*为总温,A为面积,进而在三维内转进气道两侧壁面开口布置涡轮通道,并在涡轮通道内布置涡轮发动机,在开口处装接涡轮通道分流板,同时根据发动机总体性能在涡轮通道的出口处设计涡轮通道喉道调节板;5)基于Ma2~3火箭发动机工作与Ma3~4.5亚燃燃烧室工作状态的推力需求,计算引射火箭-亚燃通道最大流量需求,从而在三维内转进气道上布置引射火箭-亚燃通道的进口及进口的面积大小,并在引射火箭-亚燃通道内布置相应大小的火箭发动机,在引射火箭-亚燃通道的进口处装接引射火箭-亚燃通道分流板,同时根据推力需求在引射火箭-亚燃通道的出口处设计引射火箭-亚燃通道喉道调节板。采用本专利技术设计方法设计的一种多通道并联的三动力组合发动机,包括三维内转进气道、尾喷管、引射火箭-亚燃通道、超燃通道和两个涡轮通道;三维内转进气道设有第一出口、第二出口、第三出口和第四出口;尾喷管设有第一入口、第二入口、第三入口和第四入口;引射火箭-亚燃通道的入口与第一出口相接,引射火箭-亚燃通道的出口与第一入口相接,引射火箭-亚燃通道内从入口到出口依次安装有火箭发动机和亚燃燃烧室;两个涡轮通道的入口分别与第二出口和第三出口相接,两个涡轮通道的出口分别与第二入口和第三入口相接,涡轮通道中间安装有涡轮发动机;超燃通道的入口与第四出口相接,超燃通道的出口与第四入口相接,超燃通道内设有超燃燃烧室;三维内转进气道的第一出口上壁面处铰接有引射火箭-亚燃通道分流板,以开启或关闭引射火箭-亚燃通道的入口。三维内转进气道的第二出口和第三出口的上壁面处铰接有涡轮通道分流板,以开启或关闭涡轮通道的入口。所述第二出口和第三出口对称设于三维内转进气道的两侧,第一出口和第四出口分别设于三维内转进气道的上部和下部。所述火箭发动机采用肋板形式固定于引射火箭-亚燃通道靠入口的一端,亚燃燃烧室安装于引射火箭-亚燃通道靠出口的一端,亚燃燃烧室为环形形式。本专利技术还包括引射火箭-亚燃通道喉道调节板,所述引射火箭-亚燃通道喉道调节板铰接于尾喷管的第一入口下壁处,引射火箭-亚燃通道喉道调节板可旋转运动以调节引射火箭-亚燃通道的喉道面积。本专利技术还包括涡轮通道喉道调节板,所述涡轮通道喉道调节板铰接于尾喷管的第二入口和第三入口的下壁处,涡轮通道喉道调节板可旋转运动以调节涡轮通道的喉道面积。本专利技术还包括喷管下调节板,所述喷管下调节板安装于尾喷管的第四入口下壁处,喷管下调节板可上下运动以调节尾喷管的面积。本专利技术的工作原理如下:1、当飞行马赫数为0~2时,两台涡轮发动机工作,涡轮通道分流板位于最上方,涡轮通道喉道调节板位于中间位置;引射火箭-亚燃通道分流板位于中间位置,引射火箭-亚燃通道喉道调节板位于中间位置,处于半通流/关闭状态,以匹配涡轮发动机的流量需求,同时在跨声速阶段涡轮发动机推力不足时也可点火燃烧提供推力。2、当飞行马赫数为2~2.2时,涡轮发动机为风车状态,飞行马赫数2.2以上状态涡轮通道分流板和涡轮通道喉道调节板关闭涡轮通道。3、当飞行马赫数为2~3,火箭发动机和亚燃燃烧室点火燃烧,用于桥接涡轮与冲压发动机推力鸿沟,该阶段根据流量需求将引射火箭-亚燃通道分流板打到上方,引射火箭-亚燃通道喉道调节板于中间形成最佳喉道面积。4、当飞行马赫数为3~4.6的状态,发动机为纯亚燃冲压发动机,引射火箭-亚燃通道分流板位于最上方,引射火箭-亚燃通道喉道调节板处于中间位置。5、当飞行马赫数为4.6以上状态,引射火箭-亚燃通道关闭。6、超燃通道在马赫数0~4.5状态处于通流状态,马赫数4.5~6+状态点火燃烧。马赫数2~2.2状态实现涡轮→亚燃燃烧的模态转换,马赫数3状态实现引射火箭-亚燃燃烧→纯亚燃燃烧的模态转换,马赫数4.5状态实现亚燃燃烧→超燃燃烧的模态转换。本专利技术兼顾低马赫数下涡轮性能和火箭高推重比特性,提高低马赫下飞行的本文档来自技高网
...

【技术保护点】
1.一种多通道并联的三动力组合发动机设计方法,其特征在于:包括以下步骤:1)根据飞行任务制定总体性能要求,基于总体性能要求设计基本流场,确定进气道捕获面积,进而在基本流场中通过流线追踪得到三维内转进气道;2)基于步骤1)三维内转进气道的出口面积,根据发动机总体性能计算超燃燃烧室进出口参数,进而设计超燃通道和超燃燃烧室;3)基于步骤2)超燃燃烧室出口参数,根据发动机总体性能设计尾喷管上型面及下调节板;4)根据Ma0~2阶段发动机流量需求,利用流量公式

【技术特征摘要】
1.一种多通道并联的三动力组合发动机设计方法,其特征在于:包括以下步骤:1)根据飞行任务制定总体性能要求,基于总体性能要求设计基本流场,确定进气道捕获面积,进而在基本流场中通过流线追踪得到三维内转进气道;2)基于步骤1)三维内转进气道的出口面积,根据发动机总体性能计算超燃燃烧室进出口参数,进而设计超燃通道和超燃燃烧室;3)基于步骤2)超燃燃烧室出口参数,根据发动机总体性能设计尾喷管上型面及下调节板;4)根据Ma0~2阶段发动机流量需求,利用流量公式计算两个涡轮通道入口面积,其中,q表示流量,K为气动常数,p*为总压,T*为总温,A为面积,进而在三维内转进气道两侧壁面开口布置涡轮通道,并在涡轮通道内布置涡轮发动机,在开口处装接涡轮通道分流板;5)基于Ma2~3火箭发动机工作与Ma3~4.5亚燃燃烧室工作状态的推力需求,计算引射火箭-亚燃通道最大流量需求,从而在三维内转进气道上布置引射火箭-亚燃通道的进口及进口的面积大小,并在引射火箭-亚燃通道内布置相应大小的火箭发动机,在引射火箭-亚燃通道的进口处装接引射火箭-亚燃通道分流板。2.如权利要求1所述一种多通道并联的三动力组合发动机设计方法,其特征在于:步骤4)中还包括:根据发动机总体性能在涡轮通道的出口处设计涡轮通道喉道调节板。3.如权利要求1所述一种多通道并联的三动力组合发动机设计方法,其特征在于:步骤5)中还包括:根据推力需求在引射火箭-亚燃通道的出口处设计引射火箭-亚燃通道喉道调节板。4.一种多通道并联的三动力组合发动机,其特征在于:包括三维内转进气道、尾喷管、引射火箭-亚燃通道、超燃通道和两个涡轮通道;三维内转进气道设有第一出口、第二出口、第三出口和第四出口;尾喷管设有第一入口、第二入口、第三入口和第四入口;引射火箭-亚燃通道的入口与第一出口相接,引射火箭-亚燃通道的出口...

【专利技术属性】
技术研发人员:邢菲郭峰朱剑锋尤延铖
申请(专利权)人:厦门大学
类型:发明
国别省市:福建,35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1