一种基于RC振荡器的片上温度检测方法技术

技术编号:20899958 阅读:26 留言:0更新日期:2019-04-17 15:59
本发明专利技术公开了一种基于RC振荡器的片上温度检测方法,包括以下步骤:步骤S1:通过RC振荡器产生一定频率的时钟信号,所述时钟信号的频率随温度变化;步骤S2:通过计数器获取时钟信号的频率;步骤S3:CPU通过查表法得到当前时钟信号频率对应的温度值。与现有技术相比较,利用RC振荡器工作的温度特性,将温度的变化反映到振荡器输出时钟频率的变化,CPU通过读取频率计数值,就可以得到当前芯片内核的温度,从而无需额外在芯片中设置温度传感器,大大降低了温度传感器所占用的芯片面积,同时能够满足各种时钟控制的应用需求。

【技术实现步骤摘要】
一种基于RC振荡器的片上温度检测方法
本专利技术属于温度传感器领域,尤其涉及一种基于RC振荡器的片上温度传感器及其温度检测方法。
技术介绍
随着集成电路技术的发展,以及应用中对温度传感器性能要求的不断提高,设计高集成度、低功耗、低成本的集成电路温度传感器成为一个重要的趋势。另一方面,由于集成电路工艺特征尺寸的不断缩小,集成电路集成度不断提高,导致芯片的散热问题越来越严重。对芯片进行实时的温度监测,并进行过热保护变得尤为重要。如何根据应用需要进行集成电路温度传感器的设计成为国内外研究的热点。目前基于CMOS工艺的集成电路温度传感器在国内外做了大量的研究,功耗不断下降、精度不断提高,其应用领域也越来越广泛。现有技术虽然能够实现性能优异的温度传感器,但是现有技术片上集成CMOS温度传感器存在实现复杂、功耗大以及占用芯片面积大的问题。随着集成电路工艺的进一步发展,芯片的体积越来越小、集成度越来越高,现有技术中片上温度传感器需占用芯片面积,这和集成化芯片的发展方向不相适应。故,针对目前现有技术中存在的上述缺陷,实有必要进行研究,以提供一种方案,解决现有技术中存在的缺陷。
技术实现思路
有鉴于此,确有必要提供一种基于RC振荡器的片上温度传感器及其温度检测方法,利用RC振荡器工作的温度特性,将温度的变化反映到振荡器输出时钟频率的变化,CPU通过读取频率计数值,就可以得到当前芯片内核的温度,从而可以通过调整电路的工作主频,以控制芯片的整体功耗,间接调节芯片的工作温度。从而无需额外在芯片中设置温度传感器,大大降低了温度传感器所占用的芯片面积,同时能够满足各种时钟控制的应用需求。为了克服现有技术的缺陷,本专利技术的技术方案为:一种基于RC振荡器的片上温度传感器,包括RC振荡器、计数器、CPU和存储器,其中,所述RC振荡器用于产生一输出频率随温度变化的时钟信号;所述计数器用于在一定闸门时间内计数时钟信号的脉冲个数并计算出所述RC振荡器的输出时钟信号的频率;所述存储器用于预先存储频率-温度的查找表;所述CPU用于根据获取的时钟信号频率通过查表法得到当前时钟信号频率对应的温度值;所述RC振荡器包括运算放大器AMP1、电阻控制单元、第一NMOS管NM1、第二NMOS管NM2、第三NMOS管NM3、第四NMOS管NM4、第五NMOS管NM5、第一PMOS管PM1、第二PMOS管PM2、第三PMOS管PM3、第四PMOS管PM4、第五PMOS管PM5、第六PMOS管PM6、第一非门NG1、第二非门NG2、第三非门NG3、第四非门NG4、第一电容C1、第二电容C2、第三电容C3和RS触发器,其中,所述运算放大器AMP1的正向输入端与基准电压Vref端相连接,所述运算放大器AMP1的反向输入端与所述第一NMOS管NM1的源极和电阻控制单元的res连接端相连接,所述运算放大器AMP1的VOUT输出端与所述第一NMOS管NM1的栅极相连接,所述第一NMOS管NM1的漏极与所述第一PMOS管PM1的漏极及栅极、所述第二PMOS管PM2的栅极、所述第三PMOS管PM3的栅极、所述第四PMOS管PM4的栅极和所述第三电容C3的一端相连接,并作为偏置biasp端为所述运算放大器AMP1提供偏置电流源;所述第一PMOS管PM1的源极、第二PMOS管PM2的源极、第三PMOS管PM3的源极、第四PMOS管PM4的源极和所述第三电容C3的另一端共同与电源输入VDD端相连接;所述第二PMOS管PM2的漏极与所述第二NMOS管NM2的漏极和所述第一非门NG1的输入端相连接,所述第一非门NG1的输出端与所述第三NMOS管NM3的栅极和所述RS触发器的输入S端相连接;所述第三PMOS管PM3的漏极与所述第五PMOS管PM5的源极和所述第六PMOS管PM6的源极相连接,所述第五PMOS管PM5的漏极与所述第二NMOS管NM2的栅极、第三NMOS管NM3的漏极和所述第一电容C1的一端相连接,所述第六PMOS管PM6的漏极与所述第四NMOS管NM4的漏极、第五NMOS管NM5的栅极和第二电容C2的一端相连接;所述第四PMOS管PM4的漏极与所述第二非门NG2的输入端和第五NMOS管NM5的漏极,所述第二非门NG2的输出端与所述第四NMOS管NM4的栅极和所述RS触发器的输入R端相连接,所述RS触发器的输出Q1端与所述第五PMOS管PM5的栅极和所述第三非门NG3的输入端相连接,所述第三非门NG3的输出端与所述第六PMOS管PM6的栅极相连接,所述RS触发器的输出Q2端与所述第四非门NG4的输入端相连接,所述第四非门NG4的输出端作为所述RC振荡器输出OUT端,所述第二NMOS管NM2的源极、第三NMOS管NM3的源极、第四NMOS管NM4的源极、第五NMOS管NM5的源极、所述第一电容C1的另一端、所述第二电容C2的另一端共同与GND端相连接;所述电阻控制单元具有温度特性,其阻值呈现稳定的温度系数。优选地,所述电阻控制单元包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第十五NMOS管NM15、第十六NMOS管NM16和第十七NMOS管NM17,其中,所述第四电阻R4的一端作为res连接端,所述第四电阻R4的另一端与所述第十七NMOS管NM17的源极和所述第三电阻R3的一端相连接,所述第三电阻R3的另一端与所述第十七NMOS管NM17的漏极、第十六NMOS管NM16的源极和所述第二电阻R2的一端相连接,所述第二电阻R2的另一端与所述第十六NMOS管NM16的漏极、第十五NMOS管NM15的源极和所述第一电阻R1的一端相连接,所述第一电阻R1的另一端和所述第十五NMOS管NM15的漏极共同与GND端相连接;所述第十五NMOS管NM15的栅极与第一频率控制信号freq1端相连接,所述第十六NMOS管NM16的栅极与第二频率控制信号freq2端相连接,所述第十七NMOS管NM17的栅极与第三频率控制信号freq3端相连接;所述第一频率控制信号freq1端、所述第二频率控制信号freq2端和所述第三频率控制信号freq3端均与所述CPU相连接。优选地,所述电阻控制单元还包括第五非门NG5、第十八NMOS管NM18和第十九NMOS管NM19相连接,所述第五非门NG5的输入端和电阻选择信号rint_en端相连接,所述第五非门NG5的输出端与所述第十九NMOS管NM19的栅极相连接,所述第十九NMOS管NM19的源极与res连接端相连接,所述第十九NMOS管NM19的漏极与外部电阻输入rext端相连接;所述第十八NMOS管NM18的栅极与电阻选择信号rint_en端相连接,所述第十八NMOS管NM18的源极与所述第一电阻R1的另一端和所述第十五NMOS管NM15的漏极相连接,所述第十八NMOS管NM18的漏极接地;所述电阻选择信号rint_en端与所述CPU相连接。优选地,所述第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4采用阱电阻。优选地,所述运算放大器AMP1进一步包括第六NMOS管NM6、第七NMOS管NM7、第八NMOS管NM8、第九NMOS管NM9、第十NMOS管NM10、第十一NMOS管NM11、第十二NMOS管NM12、第十三NMOS管NM13、本文档来自技高网...

【技术保护点】
1.一种基于RC振荡器的片上温度检测方法,其特征在于,包括以下步骤:步骤S1:通过RC振荡器产生一定频率的时钟信号,所述时钟信号的频率随温度变化;步骤S2:通过计数器获取时钟信号的频率;步骤S3:CPU通过查表法得到当前时钟信号频率对应的温度值。

【技术特征摘要】
1.一种基于RC振荡器的片上温度检测方法,其特征在于,包括以下步骤:步骤S1:通过RC振荡器产生一定频率的时钟信号,所述时钟信号的频率随温度变化;步骤S2:通过计数器获取时钟信号的频率;步骤S3:CPU通过查表法得到当前时钟信号频率对应的温度值。2.根据权利要求1所述的基于RC振荡器的片上温度检测方法,其特征在于,在所述步骤S1中,设置RC振荡器、计数器、CPU和存储器,其中,所述RC振荡器用于产生一输出频率随温度变化的时钟信号;所述计数器用于在一定闸门时间内计数时钟信号的脉冲个数并计算出所述RC振荡器的输出时钟信号的频率;所述存储器用于预先存储频率-温度的查找表;所述CPU用于根据获取的时钟信号频率通过查表法得到当前时钟信号频率对应的温度值;所述RC振荡器包括运算放大器AMP1、电阻控制单元、第一NMOS管NM1、第二NMOS管NM2、第三NMOS管NM3、第四NMOS管NM4、第五NMOS管NM5、第一PMOS管PM1、第二PMOS管PM2、第三PMOS管PM3、第四PMOS管PM4、第五PMOS管PM5、第六PMOS管PM6、第一非门NG1、第二非门NG2、第三非门NG3、第四非门NG4、第一电容C1、第二电容C2、第三电容C3和RS触发器,其中,所述运算放大器AMP1的正向输入端与基准电压Vref端相连接,所述运算放大器AMP1的反向输入端与所述第一NMOS管NM1的源极和电阻控制单元的res连接端相连接,所述运算放大器AMP1的VOUT输出端与所述第一NMOS管NM1的栅极相连接,所述第一NMOS管NM1的漏极与所述第一PMOS管PM1的漏极及栅极、所述第二PMOS管PM2的栅极、所述第三PMOS管PM3的栅极、所述第四PMOS管PM4的栅极和所述第三电容C3的一端相连接,并作为偏置biasp端为所述运算放大器AMP1提供偏置电流源;所述第一PMOS管PM1的源极、第二PMOS管PM2的源极、第三PMOS管PM3的源极、第四PMOS管PM4的源极和所述第三电容C3的另一端共同与电源输入VDD端相连接;所述第二PMOS管PM2的漏极与所述第二NMOS管NM2的漏极和所述第一非门NG1的输入端相连接,所述第一非门NG1的输出端与所述第三NMOS管NM3的栅极和所述RS触发器的输入S端相连接;所述第三PMOS管PM3的漏极与所述第五PMOS管PM5的源极和所述第六PMOS管PM6的源极相连接,所述第五PMOS管PM5的漏极与所述第二NMOS管NM2的栅极、第三NMOS管NM3的漏极和所述第一电容C1的一端相连接,所述第六PMOS管PM6的漏极与所述第四NMOS管NM4的漏极、第五NMOS管NM5的栅极和第二电容C2的一端相连接;所述第四PMOS管PM4的漏极与所述第二非门NG2的输入端和第五NMOS管NM5的漏极,所述第二非门NG2的输出端与所述第四NMOS管NM4的栅极和所述RS触发器的输入R端相连接,所述RS触发器的输出Q1端与所述第五PMOS管PM5的栅极和所述第三非门NG3的输入端相连接,所述第三非门NG3的输出端与所述第六PMOS管PM6的栅极相连接,所述RS触发器的输出Q2端与所述第四非门NG4的输入端相连接,所述第四非门NG4的输出端作为所述RC振荡器输出OUT端,所述第二NMOS管NM2的源极、第三NMOS管NM3的源极、第四NMOS管NM4的源极、第五NMOS管NM5的源极、所述第一电容C1的另一端、所述第二电容C2的另一端共同与GND端相连接;所述电阻控制单元具有温度特性,其阻值呈现稳定的温度系数;所述电阻控制单元包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第十五NMOS管NM15、第十六NMOS管NM16和第十七NMOS管NM17,其中,所述第四电阻R4的一端作为res连接端,所述第四电阻R4的另一端与所述第十七NMOS管NM17的源极和所述第三电阻R3的一端相连接,所述第三电阻R3的另一端与所述第十七NMOS管NM17的漏极、第十六NMOS管NM16的源极和所述第二电阻R2的一端相连接,所述第二电阻R2的另一端与所述第十六NMOS管NM16的漏极、第十五NMOS管NM15的源极和所述第一电阻R1的一端相连接,所述第一电阻R1的另一端和所述第十五NMOS管NM15的漏极共同与GND端相连接;所述第十五NMOS管NM15的栅极与第一频率控制信号freq1端相连接,所述第十六NMOS管NM16的栅极与第二频率控制信号freq2端相连接,所述第十七NMOS管NM17的栅极与第三频率控制信号freq3端相连接;所述第一频率控制信号freq1端、所述第二频率控制信号freq2端和所述第三频率控...

【专利技术属性】
技术研发人员:樊凌雁陈龙袁志东
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1