高岭石作为抗生素抗性基因抑制剂的应用制造技术

技术编号:20836768 阅读:50 留言:0更新日期:2019-04-13 08:13
本发明专利技术属于环境微生物学领域,公开了一种高岭石作为抗生素抗性基因抑制剂的应用。本发明专利技术通过利用高岭石调节细菌的基因表达模式和代谢,抵抗低剂量的抗生素应激,从而抑制基因突变的产生,进而降低抗生素抗性基因的产生。具有方法简单、无需特殊专用设备、原材料容易获得、投资少、易于工业化生产等优点。高岭石的投加对抗生素抗性基因的表达具有较好的抑制效果。

【技术实现步骤摘要】
高岭石作为抗生素抗性基因抑制剂的应用
本专利技术属于环境微生物学领域,具体涉及一种高岭石作为抗生素抗性基因抑制剂的应用。
技术介绍
目前抗生素耐药性已经在全球范围内造成巨大的公共卫生风险,抗生素治疗传染病的能力正在迅速下降。往往不适当地使用抗生素,容易使许多细菌进化出抗生存能力。因此,更好地了解抗生素对细菌的影响,以减缓耐药性的出现非常必要。细菌产生抗生素抗性基因(AntibioticResistanceGenes,ARG(s))的机制有许多种,包括在群体中药物特异性选择天然存在的抗性变异,抗性基因的水平转移和超突变菌株中增加的诱变。更好地理解促进抗生素抗性发展的分子机制和澄清导致细胞中ARG(s)产生的抗生素的分子反应是至关重要的。大量研究表明使用致死浓度的氨苄青霉素或诺氟沙星治疗大肠杆菌,细胞修复损伤的应激反应、非必需蛋白质的合成、能量代谢和小分子的运输能力均受到抑制,且抑制细胞的分裂和生长。虽然严重的压力对细胞的一般影响是停止生长,保留能量并将其重定向到维持和修复,但是暴露于亚致死应激的细胞,例如抗生素的亚MIC,不会停止生长,也不会死亡。这表明他们能够调整他们的基因表达模式和新陈代谢,同时响应抗生素诱导的压力并保持快速生长。有证据表明,用亚致死剂量的不同应激源处理的细菌可以在成功处理大分子损伤和代谢紊乱的同时保持高生长率。粘土矿物与细菌活动密切相关,土壤中的粘土矿物是细菌容易获得的支持基质和栖息地,。细菌所在空间和时间尺度上与它们相互作用。同时,细菌很容易通过细胞壁,粘性胶囊,菌毛或鞭毛吸附在粘土矿物表面,并粘附在粘土上。研究表明,粘土矿物质在细菌的生长和代谢中起重要作用,各种粘土矿物质可以促进细菌的生长。此外,一些报道还证明,粘土矿物如蒙脱石和高岭石可以保护放线菌和纤维真菌等微生物免受重金属镉的毒性作用。高岭石、蒙脱石和云母还具有防止紫外线穿透和紫外线防护的性质。蒙脱石可以提高棕色球形固氮细菌的活力和耐高温性。这些研究表明,粘土矿物可以缓解微生物的一些环境压力,其广泛的相互作用对于环境生物修复至关重要。由于上述原因,细菌在粘土矿物的吸附和保护下,有可能调节其基因的表达模式和代谢,抵抗低剂量的抗生素应激,从而抑制基因突变的产生,降低ARG(s)产生的可能性。
技术实现思路
基于以上现有技术,本专利技术的目的在于提供一种高岭石作为抗生素抗性基因抑制剂的应用。本专利技术应用通过利用高岭石对微生物的吸附和保护作用,缓解微生物的一些环境压力,调节细菌的基因表达模式和代谢,抵抗低剂量的抗生素应激,从而抑制基因突变的产生,进而降低抗ARG(s)产生的可能性。为抑制抗生素抗性基因表达的研究提供一定的参考价值。本专利技术目的通过以下技术方案实现:一种高岭石作为抗生素抗性基因抑制剂的应用。进一步地,所述抗生素是指氨苄青霉素、四环素、邻氯青霉素、丁胺卡那霉素、羟氨苄青霉素中的一种或两种以上的混合。进一步地,所述应用过程为:将高岭石与细菌在抗生素条件下混合培养,抑制细菌抗生素抗性基因的产生。进一步地,所述高岭石使用前先经研磨、筛分、灭菌和干燥处理。进一步地,所述高岭石的的加入量为5~20g/L,更优选为10g/L。进一步地,所述的细菌是指大肠杆菌。相对于现有技术,本专利技术具有如下优点及有益效果:本专利技术通过利用高岭石调节细菌的基因表达模式和代谢,抵抗低剂量的抗生素应激,从而抑制基因突变的产生,进而降低抗生素抗性基因的产生。具有方法简单、无需特殊专用设备、原材料容易获得、投资少、易于工业化生产等优点。高岭石的投加对抗生素抗性基因的表达具有较好的抑制效果。附图说明图1为实施例1中氨苄青霉素(AMP)培养基中有无高岭石(KA)对氨苄青霉素(a)和四环素(b)MIC的影响结果图。图2为实施例2中氨苄青霉素和四环素混合培养基(AMP+TET)中有无高岭石(KA)对氨苄青霉素(a)和四环素(b)MIC的影响结果图。具体实施方式下面结合实施例及附图对本专利技术作进一步详细的描述,但本专利技术的实施方式不限于此。通过实时荧光定量聚合酶链式反应(PCR)、相对和绝对定量同位素标记(isobarictagsforrelativeandabsolutequantitation,iTRAQ)和液相色谱串联质谱(LC-MS/MS)蛋白质组学分析技术,分析不同高岭石投加量下,培养液中抗生素ARG(s)的表达效果。使用氨苄青霉素诱导得到的qPCR结果见表1,单位是2-⊿⊿Ct。K0,K5,K10,K15,K20分别代表高岭石投加量为0,5,10,15,20g/L。根据qPCR结果,以下实施例中选取10g/L为最适投加量。表1氨苄青霉素诱导得到的qPCR结果(2-⊿⊿Ct)实施例1(1)条件一:在野生型大肠杆菌ATCC25922培养基中加入氨苄青霉素培养15天;条件二:在野生型大肠杆菌ATCC25922培养基中加入氨苄青霉素和高岭石(使用前先经研磨过200目筛筛分,将网状粘土粉末高压灭菌并在120℃的烘箱中干燥)培养15天。(2)将来自两种处理条件的等分试样细胞稀释到MHB培养基中,使得OD600为0.02并分配到含有各种浓度(128μg·ml-1至0.25μg·ml-1)的氨苄青霉素的96孔板中。将板在37℃下孵育24小时,之后使用酶标仪测量600nm处的光密度(OD600)。计算每种药物浓度的中值OD600,并将MIC(最小抑菌浓度)确定为OD600抑制90%生长的浓度。(3)每三天取样测试分析一次,分析氨苄青霉素培养基中有无高岭石对氨苄青霉素和四环素MIC的影响,结果分别见图1中(a)和(b)。实施例2(1)条件一:在野生型大肠杆菌ATCC25922培养基中加入氨苄青霉和四环素混合物培养15天;条件二:在野生型大肠杆菌ATCC25922培养基中加入氨苄青霉素、四环素和高岭石培养15天。(2)将来自两种处理条件的等分试样细胞稀释到MHB培养基中,使得OD600为0.02并分配到含有各种浓度(128μg·ml-1至0.25μg·ml-1)的氨苄青霉和四环素混合物的96孔板中。将板在37℃下孵育24小时,之后使用酶标仪测量600nm处的光密度(OD600)。计算每种药物浓度的中值OD600,并将MIC确定为OD600抑制90%生长的浓度。(3)每三天取样测试分析一次,分析氨苄青霉素和四环素混合培养基中有无高岭石对氨苄青霉素和四环素MIC的影响,结果分别见图2中(a)和(b)。结果表明:用不同抗生素处理野生型大肠杆菌15天,导致氨苄青霉素和四环素不同水平的MIC增加。这些结果表明用氨苄青霉素或四环素或两者处理可以刺激形成对不同抗生素具有潜在抗性的突变体。对于大肠杆菌,对氨苄青霉素的MIC低于32μg·ml-1为敏感,高于32μg·ml-1定义为抗性。对四环素的MIC小于16μg·ml-1为敏感,MIC为16μg·ml-1以上为抗性。我们发现野生型大肠杆菌对四环素的MIC为2μg·ml-1,敏感;氨苄青霉素的MIC为2μg·ml-1,也是敏感的。所有样品在抗生素处理15天后产生抗性。值得一提的是,添加到高岭石中的氨苄青霉素处理的样品相对于不存在高岭石具有较慢的抗性,并且最终的MIC值低于未高岭石样品的MIC值。这同样适用于高岭石样品与氨苄青霉素和四环素混合的情况。上述本文档来自技高网
...

【技术保护点】
1.高岭石作为抗生素抗性基因抑制剂的应用。

【技术特征摘要】
1.高岭石作为抗生素抗性基因抑制剂的应用。2.根据权利要求1所述的高岭石作为抗生素抗性基因抑制剂的应用,其特征在于:所述抗生素是指氨苄青霉素、四环素、邻氯青霉素、丁胺卡那霉素、羟氨苄青霉素中的一种或两种以上的混合。3.根据权利要求1所述的高岭石作为抗生素抗性基因抑制剂的应用,其特征在于所述应用过程为:将高岭石与细菌在抗生素条件下混合培养,抑制细菌抗生素抗性基因的产生。4.根据权利要求3所述的高岭石作为...

【专利技术属性】
技术研发人员:吴平霄李义豪赖晓琳党志林璋朱能武
申请(专利权)人:华南理工大学
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1