用于光电化学分解水制氢的基底的制备方法及其产品和应用技术

技术编号:20352267 阅读:30 留言:0更新日期:2019-02-16 12:22
本发明专利技术涉及了一种用于光电化学分解水制氢的基底的制备方法及其产品和应用,利用传统的水热法在新的实验参数的条件下在FTO玻璃表面制备性能优越的In2S3超薄纳米片阵列,制备出的In2S3超薄纳米片阵列致密而均匀;在制备好的In2S3光电化学分解水的基底上继续生长ZnO纳米颗粒,ZnO半导体与In2S3构建异质结,通过控制ZnO生长的时间来控制ZnO纳米颗粒的粒径及ZnO在In2S3薄膜中的含量,从而实现对In2S3光电性能的调控,显著提高光解水基底的光电流。将In2S3纳米片阵列与ZnO纳米颗粒的制备结合起来,构成In2S3‑ZnO异质结,利用ZnO纳米颗粒均匀、表面积大的优点提高In2S3光电性能,按照本方案制备出的复合光阳极结构在500 W模拟太阳光的照射下比纯In2S3光阳极结构的光电流提高3倍。

【技术实现步骤摘要】
用于光电化学分解水制氢的基底的制备方法及其产品和应用
本专利技术属于光水解材料制备
,涉及一种用于光电化学分解水制氢的基底的制备方法及其产品和应用,具体涉及一种用于光电化学水分解的氧化锌纳米颗粒增强超薄In2S3纳米片基底的制备方法。
技术介绍
作为一种清洁,可再生和环保的太阳能储存方法,光电化学(PEC)水分解被证明是生产氢气作为无碳燃料的最有效方法之一。自从Fujishima和Honda在20世纪70年代早期开创性工作以来,在过去的四十年中,各种半导体作为光电极进行了深入研究,以实现有效的太阳能-氢转换。实现高能量转换效率的关键问题是追求和设计具有足够光吸收的合适半导体光阳极,高效的电荷分离和快速运输。与相应的块状材料相比,二维(2D)纳米结构半导体,如纳米片,纳米片和纳米片,特别是垂直纳米阵列结构,由于其独特的机械,物理和化学性质,在人工光合作用中特别受关注。FTO导电玻璃为掺杂氟的SnO2透明导电玻璃(SnO2:F),简称为FTO。FTO玻璃被作为ITO导电玻璃的替换用品被开发利用,可被广泛用于液晶显示屏,光催化,薄膜太阳能电池基底、染料敏化太阳能电池、电致变色玻璃等领域。在各种半导体中,金属硫属元素化物是一组用于PEC水分解的高效催化剂。作为最重要的III-VI硫属元素化物之一,硫化铟(In2S3)因其在光催化剂,太阳能电池和其他光电器件中的应用而得到了很好的研究。据报道,缺陷尖晶石结构b-In2S3是一种带隙为2.0-2.3eV的n型半导体,它是一种很有前途的光电阳极材料,然而纯In2S3纳米晶体本身的PEC性能仍远未令人满意。构建纳米阵列结构如纳米片阵列(NSA)是避免上述限制的有效方式,然后进一步增强半导体光电极的PEC特性。该结构可以利用2D纳米晶体的所有优点,因为它们与薄膜光电极相比具有提高的光吸收率,缩短少数载流子扩散和增加电极/电解质界面的固有优点,。此外,由两种或更多种不同半导体组成的异质结光电极比PEC水分解中由单一半导体制成的异质结光电极更具优势。异质结光电极不仅可以改善光生载流子的分离和转移,实现定向的面对面迁移,还可以通过选择耐腐蚀材料与电解质接触来增强光学吸收和化学稳定性。
技术实现思路
本专利技术的目的在于提供一种用于光电化学分解水制氢的基底的制备方法,所需材料易得,制备工艺成熟,可重复性好,易于实现批次制备。本专利技术的再一目的在于:提供一种上述方法制备的用于光电化学分解水制氢的基底产品。本专利技术的又一目的在于:提供一种上述产品的应用。本专利技术目的通过下述方案实现:一种用于光电化学分解水制氢的基底的制备方法,利用传统的水热法在FTO玻璃表面制备性能优越的In2S3超薄纳米片阵列,制备出的In2S3超薄纳米片阵列致密而均匀;在制备好的In2S3光电化学分解水的基底上继续生长ZnO纳米颗粒,ZnO半导体与In2S3构建异质结,通过控制ZnO生长的时间来控制ZnO纳米颗粒的粒径及ZnO在In2S3薄膜中的含量,从而实现对In2S3光电性能的调控,显著提高光解水基底的光电流,包括以下步骤:(1)将包覆有In2S3纳米阵列薄膜的FTO玻璃作为主要的光阳极结构,其中In2S3的制备方法为:四水合三氯化铟与硫代乙酰胺作为反应前驱体、乙二醇作为溶剂,在乙二醇中三氯化铟的浓度固定为0.6M,在温度180-200℃条件下溶剂热反应制备生成In2S3纳米片阵列;(2)在In2S3纳米片薄膜上生长ZnO纳米颗粒,In2S3形成异质结,通过控制ZnO纳米颗粒的生长时间来调控In2S3纳米阵列光阳极在可见光照射下产生光电流、从而分解水制氢气的光电性能。步骤(1)中使用三氯化铟及硫代乙酰胺作为合成In2S3的原料,其物质量比范围为(32—40):100。步骤(1)溶剂热反应的时间为1-3h。步骤(2)中使用硫酸锌水溶液和氨水作为制备氧化锌颗粒的原料;其物质量比范围为:(75-82.5):100。步骤(2)中使用硫酸锌水溶液和氨水作为制备氧化锌颗粒的原料;其反应温度控制在80-100℃,反应时间分别为1-8h。本专利技术提供一种用于光电化学分解水制氢的基底,根据上述任一所述方法制备得到。本专利技术提供一种基底用于光电化学分解水制氢的应用。利用氧化锌颗粒增强超薄In2S3纳米片基底光电化学水解能力,该方法具体步骤为:(1)将未经处理的FTO基底采用去离子水清洁干净并用氮气吹干,镀层朝下置于反应釜中;(2)将四水合三氯化铟与硫代乙酰胺混合后用乙二醇溶解后倒入反应釜,在设定温度下反应生成In2S3纳米片阵列,制备的基底中三氯化铟及硫代乙酰胺质量比范围为(32—40):100。(3)将步骤(2)中制备的基底用去离子水冲洗干净、氮气吹干后,面朝下置于反应釜中,将硫酸锌溶液与氨水混合后倒入反应釜,在80-100℃,反应时间分别为1-8h条件下在制备的基底上反应生成ZnO纳米颗粒。(4)用去离子水反复清洗步骤(3)中制备基底后在真空干燥箱内于干燥,即可获得具有良好光电化学水分解性能的氧化锌颗粒增强超薄In2S3纳米片基底。本专利技术有如下优点:将In2S3纳米片阵列与ZnO纳米颗粒的制备结合起来,构成In2S3-ZnO异质结,利用ZnO纳米颗粒均匀、表面积大的优点提高In2S3光电性能,按照本方案制备出的复合光阳极结构在500W模拟太阳光的照射下比纯In2S3光阳极结构的光电流提高3倍。附图说明图1本专利技术实施例2、3、4、5中制备的氧化锌纳米颗粒增强超薄In2S3纳米片基底的光电流图;图2本专利技术实施例4中制备的氧化锌纳米颗粒增强超薄In2S3纳米片基底的扫描电镜图片。具体实施方式下面对本专利技术的实施例作详细说明,本实施例在以本专利技术技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本专利技术的保护范围不限于下述的实施例。实施例1将FTO玻璃基底用去离子水清洗干净后用氮气枪吹干,取清洁的反应釜,将清洁干净的FTO玻璃基底正面(附有FTO镀层的面)朝下,斜靠容器壁立于反应釜中;将24mM的四水合三氯化铟与60mM的硫代乙酰胺用乙二醇溶解制成40ml的混合溶液后倒入反应釜中,在180℃下反应2h后制得表面附有In2S3纳米片阵列的基底,表面呈亮黄色。用去离子水将该基底清洁干净后用氮气枪吹干,将基底再次正面朝下(附有In2S3的面)斜立于清洁的反应釜中,使玻璃片被混合溶液全部浸没。制备100ml1.6mM的硫酸锌水溶液,与2ml氨水混合均匀后导入反应釜中,在90℃下反应1h后取出,用去离子水清洗干净,放在真空干燥箱内于50℃干燥1h,即可制得氧化锌异质结增强超薄In2S3纳米片基底。实施例2将FTO玻璃基底用去离子水清洗干净后用氮气枪吹干,取清洁的反应釜,将清洁干净的FTO玻璃基底正面(附有FTO镀层的面)朝下,斜靠容器壁立于反应釜中。将24mM的四水合三氯化铟与63mM的硫代乙酰胺用乙二醇溶解制成40ml的混合溶液后倒入反应釜中,在200℃下反应2h后制得表面附有In2S3纳米片阵列的基底,表面呈亮黄色。用去离子水将该基底清洁干净后用氮气枪吹干,将基底再次正面朝下(附有In2S3的面)斜立于清洁的反应釜中,使玻璃片被混合溶液全部浸没。制备100ml1.5mM的硫酸锌水溶液,与2ml氨水混合均匀后导入反应釜中,在80℃本文档来自技高网
...

【技术保护点】
1.一种用于光电化学分解水制氢的基底的制备方法,其特征在于,利用水热法在附有FTO镀层的玻璃表面制备In2S3超薄纳米片阵列;在制备好的In2S3光电化学分解水的基底上继续生长ZnO纳米颗粒,ZnO半导体与In2S3构建异质结,通过控制ZnO生长的时间来控制ZnO纳米颗粒的粒径及ZnO在In2S3薄膜中的含量,从而实现对In2S3光电性能的调控,包括以下步骤:(1)将包覆有In2S3纳米阵列薄膜的FTO玻璃作为主要的光阳极结构,其中In2S3的制备方法为:四水合三氯化铟与硫代乙酰胺作为反应前驱体、乙二醇作为溶剂,在乙二醇中三氯化铟的浓度固定为0.6M,在温度180‑200℃条件下溶剂热反应制备生成In2S3纳米片阵列;(2)在In2S3纳米片薄膜上生长ZnO纳米颗粒,In2S3形成异质结,通过控制ZnO纳米颗粒的生长时间来调控In2S3纳米阵列光阳极在可见光照射下产生光电流、从而分解水制氢气的光电性能。

【技术特征摘要】
1.一种用于光电化学分解水制氢的基底的制备方法,其特征在于,利用水热法在附有FTO镀层的玻璃表面制备In2S3超薄纳米片阵列;在制备好的In2S3光电化学分解水的基底上继续生长ZnO纳米颗粒,ZnO半导体与In2S3构建异质结,通过控制ZnO生长的时间来控制ZnO纳米颗粒的粒径及ZnO在In2S3薄膜中的含量,从而实现对In2S3光电性能的调控,包括以下步骤:(1)将包覆有In2S3纳米阵列薄膜的FTO玻璃作为主要的光阳极结构,其中In2S3的制备方法为:四水合三氯化铟与硫代乙酰胺作为反应前驱体、乙二醇作为溶剂,在乙二醇中三氯化铟的浓度固定为0.6M,在温度180-200℃条件下溶剂热反应制备生成In2S3纳米片阵列;(2)在In2S3纳米片薄膜上生长ZnO纳米颗粒,In2S3形成异质结,通过控制ZnO纳米颗粒的生长时间来调控In2S3纳米阵列光阳极在可见光照射下产生光电流、从而分解水制氢气的光电性能。2.根据权利要求1所述的用于光电化学分解水制氢的基底的制备方法,其特征在于步骤(1)中将24mM的四水合三氯化铟与60-75mM的硫代乙酰胺用乙二醇溶解制成40ml的混合溶液后倒入反应釜中,在180℃-200℃下溶剂热反应1-3h后制得表面附有In2S3纳米片阵列的基底。3.根据权利要求1或2所述的用于光电化学分解水制氢的基底的制备方法...

【专利技术属性】
技术研发人员:何丹农卢静白仕亨涂兴龙葛美英金彩虹
申请(专利权)人:上海纳米技术及应用国家工程研究中心有限公司
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1