当前位置: 首页 > 专利查询>湖南大学专利>正文

一种三维石墨烯及制备方法技术

技术编号:20347624 阅读:17 留言:0更新日期:2019-02-16 10:52
本发明专利技术提供了一种三维石墨烯材料,其内部具有孔径在2nm以下微孔,材料的比表面积为281~392m

【技术实现步骤摘要】
一种三维石墨烯及制备方法
本专利技术涉及一种石墨材料及制备方法,特别涉及一种三维石墨烯及制备方法。
技术介绍
锂金属相对其他电极材料有着最高的理论比容量(3860mAh/g),是石墨负极的的十倍多,且密度很轻(0.53g/cm3),电化学势也最低(-3.04V),是负极材料的最终选择,也是下一代锂硫电池、锂空电池的负极材料最好的选择。但是由于锂金属电池在实际应用中,锂枝晶非常容易生成且锂枝晶沉积的很不均匀,生长不可控,为解决上述锂金属电池使用过程中出现的锂枝晶不可控生长的问题,有采用三维石墨烯作为锂金属负极骨架材料的技术路径。但目前也存在三维石墨烯材料本身多由50nm以上的大孔搭建,2nm以下的微孔几乎没有,因此材料的比表面积小,使得作为负极骨架材料时,局部电流密度仍较大,锂枝晶仍易生成,不能很好地解决锂金属电池的锂枝晶不可控生长的问题。
技术实现思路
本专利技术旨在提供一种具有一定数量的微孔、比表面积高的三维石墨烯材料,并且提供一种工艺简单的制备方法。本专利技术的方案如下所述:一种三维石墨烯,孔径在2nm以下的孔容体积为0.01~0.035cm3/g;采用BET模型,在相对压力为0.0~0.1的等温吸脱附曲线测得材料的比表面积为281~392m2/g;材料的层间距为0.369nm~0.371nm;材料的拉曼光谱中D峰强度G峰强度之比为1.25~1.21。层间距是根据布拉格方程2dsinθ=nλ计算得出,其中n取1,波长θ角为三维石墨烯材料经X射线衍射(XRD)时的最强衍射峰的2θ角中的θ角度值;三维石墨烯材料的Raman光谱图曲线表明在约1580cm-1处出现了非常明显的特征峰,该特征峰称为G峰,G特征峰是由布里渊区域中心的E2g声子振动所导致的,代表sp2杂化结构的碳原子,用于表征碳材料的有序度及对称性,曲线在约1350cm-1处也出现了特征峰,称为D峰,用于表征碳材料的无序度及缺陷,D峰强度和G峰强度之比可以反映出被测样品在结构上的无序程度,其数值越小,说明样品的结构越规整,越有序;反之,则说明样品的无序程度比较高。特别地,实验中也发现,当三维石墨烯具有以下特征时其性能更优,孔径在2nm以下的孔容体积为0.01~0.15cm3/g;采用BET模型,在相对压力为0.0~0.1的等温吸脱附曲线测得材料的比表面积为391~392m2/g;材料的层间距为0.371nm;材料的拉曼光谱中D峰强度G峰强度之比为1.21。一种制备上述三维石墨烯的方法,将一定质量的氧化石墨烯粉末在水溶液中超声分散直至得到浓度为2~8mg/ml的氧化石墨烯溶液,之后,于溶液体系中同时进行超声和搅拌8~24小时得到氧化石墨烯悬浮液;再将氧化石墨烯悬浮液加入至反应釜中,将悬浮液体系的pH值调控到碱性,再于150~210℃处理6~20小时制得三维石墨烯水凝胶,之后冷冻干燥48~96小时得到三维石墨烯。氧化石墨烯粉可采用以微晶石墨为原料以Hummers法制备得到。所述的反应釜为采用高聚合物材料作内衬的反应釜,一般地高聚合物材料可以为聚四氟乙烯。特别地,在制备中,所述的氧化石墨烯悬浮液超声和搅拌的时间为12小时效果最优。与现有技术相比,本专利技术具有以下优点:1、本专利技术的三维石墨烯材料由于具有大量的微孔,比表面积大,采用熔融法将其用于制备自支撑的三维石墨烯/金属锂复合电极与金属锂片组装成半电池进行循环性能测试,结果表明该半电池的放电比容量基本维持在1300mAhg-1,而且库伦效率在循环100次后还稳定的保持在85%左右。本专利技术的三维墨烯材料用于锂电池的电极材料时,可以有效地降低电流密度、缓解金属锂的体积膨胀从而抑制枝晶的生长,使得其作为电极材料应用时,可有效提高电池的化学稳定性和电池的循环性能。2、本专利技术的制备方法是在氧化石墨烯组装法合成三维石墨烯的现有技术中,直接通过改变超声和搅拌的时间改变氧化石墨烯的尺寸,使得制备的三维石墨烯具有丰富的孔隙和较大的比表面积。制备方法简单且容易控制。附图说明图1实施例1中各三维石墨烯材料的扫描电镜图图2实施例1中各三维石墨烯材料的X射线衍射图图3实施例1中各三维石墨烯材料的拉曼光谱图图4实施例1中各三维石墨烯材料的孔径分布图具体实施方式实施例1一种制备上述三维石墨烯的方法,首先以微晶石墨为原料采用Hummers法制备得到氧化石墨烯粉,再将一定质量的氧化石墨烯粉末在水溶液中超声分散直至得到浓度为4mg/ml的氧化石墨烯溶液,之后,于溶液体系中同时进行超声和搅拌一定时间,该时间范围是8~24小时,得到氧化石墨烯悬浮液;再将氧化石墨烯悬浮液加入至以聚四氟乙烯为内衬的反应釜中,将悬浮液体系的pH值调控到碱性,再于180℃处理12小时制得三维石墨烯水凝胶,取出制备的三维石墨烯水凝胶用水漂洗干净,之后冷冻干燥48小时得到三维石墨烯。为便于比较对照,其余条件不变,仅改变氧化石墨烯溶液的超声和搅拌的时间,分别取8小时、12小时和24小时,制得的三维石墨烯材料分别标示为:实施例1A,实施例1B和实施例1C,同时,作为对比例,按现有技术方法只超声和搅拌2小时制得的三维石墨烯材料作为对比例1。在扫描电镜下对其显微结构进行观察上述材料,在放大倍数50000倍下观得的扫描电镜如图1所示,其中,按顺序图1a、1b、1c、1d分别对应实施例1A,实施例1B、实施例1C和对比例1。从图1d中可看出,对比例1的石墨烯片尺寸最大,在图中也只能观察到一片石墨烯的局部褶皱区域,没有明显的孔结构,而从1a、1b、1c中可看出,实施例1A,实施例1B、实施例1C的石墨烯材料均呈现薄纱状,其层数比对比例1的材料要少,并且搭建出了纳米级的孔道结构。分别对上述四种材料进行X射线衍射分析,结果如图2所示。对比例1、实施例1A,实施例1B和实施例1C的三维石墨烯材料,最强衍射峰的2θ角分别是24.49°、24.08°、23.93°、24.24°。根据布拉格方程2dsinθ=nλ,其中n取1,计算得出层间距d分别为0.363nm、0.369nm、0.371nm、0367nm。分别对上述四种材料进行拉曼光谱分析,结果如图3所示。从图中可以看出,对比例1、实施例1A,实施例1B和实施例1C的三维石墨烯材料,都分别约在1580cm-1和1350cm-1处出现强峰,两个强峰分别为G特征峰和D特征峰,G特征峰是由布里渊区域中心的E2g声子振动所导致的,代表sp2杂化结构的碳原子,用于表征碳材料的有序度及对称性,D特征峰用于表征碳材料的无序度及缺陷。对比例1、实施例1A,实施例1B和实施例1C四种材料的D特征峰与G特征峰的强度之比分别为1.3、1.25、1.21和1.23。上述四种材料的N2的等温吸脱附实验表明,利用BET模型,对P/P0为0.0-0.1时低压段进行分析,得到对比例1、实施例1A,实施例1B和实施例1C的三维石墨烯材料的比表面积分别为44.62m2/g、281.86m2/g、391.33m2/g、330.04m2/g。使用BJH方法对P/P0为0.3-0.8的中压段进行分析,得到三维石墨烯的孔径分布如图4所示,对比例1三维石墨烯材料中几乎没有2nm以下的微孔,都为中孔和大孔;而实施例1A,实施例1B和实施例1C的三维石墨烯材料中孔径在2nm以下的孔容体积分布本文档来自技高网...

【技术保护点】
1.一种三维石墨烯,其特征在于:孔径在2nm以下的孔容体积为0.01~0.035cm3/g;采用BET模型,在相对压力为0.0~0.1的等温吸脱附曲线测得材料的比表面积为281~392m2/g;材料的层间距为0.369nm~0.371nm;材料的拉曼光谱中D峰强度G峰强度之比为1.25~1.21。

【技术特征摘要】
1.一种三维石墨烯,其特征在于:孔径在2nm以下的孔容体积为0.01~0.035cm3/g;采用BET模型,在相对压力为0.0~0.1的等温吸脱附曲线测得材料的比表面积为281~392m2/g;材料的层间距为0.369nm~0.371nm;材料的拉曼光谱中D峰强度G峰强度之比为1.25~1.21。2.如权利要求1所述的三维石墨烯,其特征在于:孔径在2nm以下的孔容体积为0.01~0.15cm3/g;采用BET模型,在相对压力为0.0~0.1的等温吸脱附曲线测得材料的比表面积为391~392m2/g;材料的层间距为0.371nm;材料的拉曼光谱中。3.一种制备如...

【专利技术属性】
技术研发人员:陈惠巫静刘洪波甘河
申请(专利权)人:湖南大学
类型:发明
国别省市:湖南,43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1