一种液化气体的纯化装置制造方法及图纸

技术编号:20339392 阅读:38 留言:0更新日期:2019-02-16 08:35
本实用新型专利技术提供一种液化气体的纯化装置,包括:换热系统和分离系统,所述换热系统连接在原料进料口和所述分离系统的进料口之间,所述分离系统的产品出料口连接至所述换热系统,再接入产品储罐,所述换热系统内设有传热工质,以使经过所述换热系统的物料吸收或释放热量。本实用新型专利技术的装置使待纯化气体先经过换热系统降温处理,再在分离系统内完成杂质气体与液化气体的分离,通过换热系统降温有利于减少液化气体中的饱和水,以及后续的气液相分离,而且换热系统中的热量被充分利用,用于产品和杂质气体的预热,故而减少了外部冷热源的设置,降低了整个装置的能耗。

【技术实现步骤摘要】
一种液化气体的纯化装置
本技术涉及化工原料的纯化领域,更具体地,涉及一种液化气体的纯化装置。
技术介绍
一氧化二氮,化学式为N2O,又称氧化亚氮、笑气,是化学和电子工业中的重要原料,用途广泛。制备N2O的主要方法有硝酸铵热分解法和氨的接触氧化法,或者回收生产乙二酸过程中产生的尾气。据报道,目前国内生产N2O基本都是采用硝酸铵干法分解的生产工艺。直接制备得到的产品纯度通常较低,经纯化后纯度达到99%的产品能够满足医药等领域的应用,但对于微电子领域而言,这样的纯度远不能够达到指标要求。因此,在N2O产品纯化方面,人们不断研究以低纯度N2O为原料,利用纯化工艺脱除各种杂质从而制备高纯N2O的方法。二氧化碳,化学式为CO2,可应用于灭火器、气体肥料、药用等。二氧化碳的工业制法为高温煅烧石灰石,产生的气体中含有一定杂质,需要进一步纯化。但现有的纯化一氧化二氮或者二氧化碳的工艺一般需要精馏、多塔串联,能耗高、工艺复杂。因此,需要提出一种工艺简单且能耗低的纯化液化气体的装置。
技术实现思路
针对现有技术的不足,本技术提供一种液化气体的纯化装置,在进料口和分离系统之间设有换热系统,充分利用换热系统进行热量交换,工艺流程简单,能耗低。本技术提供一种液化气体的纯化装置,包括:换热系统和分离系统,所述换热系统连接在原料进料口和所述分离系统的进料口之间,所述分离系统的产品出料口连接至所述换热系统,再接入产品储罐,所述换热系统内设有传热工质,以使经过所述换热系统的物料吸收或释放热量。优选地,所述换热系统包括第一换热通道和第二换热通道,所述第一换热通道的进料口连接所述原料进料口,所述第一换热通道的出料口连接所述分离系统的进料口,所述分离系统的产品出料口连接所述第二换热通道的进料口,所述第二换热通道的出料口连接所述产品储罐。优选地,所述换热系统还包括第三换热通道,所述分离系统的废气出料口连接所述第三换热通道的进料口,所述第三换热通道的出料口连接至液化气体的生产线中。优选地,所述换热系统包括串联连接的两个换热器,所述第一换热通道依次穿过两个所述换热器,所述第二换热通道穿过其中一个所述换热器,所述第三换热通道穿过另一个所述换热器。优选地,所述分离系统包括相互连接的塔釜再沸器和闪蒸塔。本技术提供的液化气体的纯化装置,先经过换热系统进行降温处理,再在分离系统内完成杂质气体与液化气体的分离,通过换热系统降温有利于减少液化气体中的饱和水,以及后续的气液相分离,而且换热系统中的热量被充分利用,用于产品和杂质气体的预热,故而减少了外部冷热源的设置,降低了整个装置的能耗。附图说明图1为本技术实施例1中液化气体纯化装置的结构示意图;图2为本技术实施例2中液化气体纯化装置的结构示意图;图中:1-闪蒸塔,2-第一换热器,3-第二换热器,4-产品储罐,5-塔釜再沸器,6-第三换热器。具体实施方式下面结合附图和实施例,对本技术的具体实施方式作进一步详细描述。以下实施例用于说明本技术,但不用来限制本技术的保护范围。实施例1本实施例提供一种液化气体的纯化装置,如图1所示,包括:闪蒸塔1、第一换热器2、第二换热器3、产品储罐4和塔釜再沸器5,第二换热器3、第一换热器2、塔釜再沸器5和闪蒸塔1依次串联,原料进料口与第二换热器3相连,闪蒸塔1的塔顶出料口连接穿过第二换热器3的一条换热通道,闪蒸塔1的塔底出料口连接穿过第一换热器2的一条换热通道,至产品储罐4。杂质气体的分离主要在塔釜再沸器5和闪蒸塔1中完成,分离之前经过第一换热器2和第二换热器3降温处理有利于后续的气液相分离,而且第一换热器2中的热量能被充分利用,故而减少了外部冷热源的设置,降低了整个装置的能耗。本实施例中闪蒸塔1的塔顶出料口连接穿过第二换热器3的一条换热通道后,连接至液化气体的生产线中。利用上述纯化装置纯化一氧化二氮的方法,包括:将含有氮气和氧气杂质的一氧化二氮粗品从进料口进料,进料温度约-30~-15℃,压力为1.5~2.2MPaG,依次通过第二换热器3和第一换热器2进行降温至-90~-50℃,再经过塔釜再沸器5后进入闪蒸塔1,塔釜再沸器5温度设定为-90~-60℃,闪蒸塔1压力设定为0~1.0MPaG,进行气液相分离,同时温度再降低到-90~-80℃,含有较高浓度氮气和氧气的气体从塔顶排出,这些低温气体在第二换热器3中被加热至-60~-20℃后排放;含有较低浓度氮气和氧气的液体沿塔下降到塔釜,被塔釜再沸器5加热再次排放杂质气体,纯度高的一氧化二氮液体从塔底流出被泵输送出去,并在第一换热器2中被加热至-60~-30℃,再通入产品储罐4内存储。本实施例中一氧化二氮粗品为工业级一氧化二氮液体,具体参数为压力1.5~2.5MPa、温度-25℃~-15℃以及纯度>99.0%。经纯化后,产品纯度>99.9995%,可应用领域广。本实施例中工业级一氧化二氮经过第二换热器3时放出热量,杂质气体经过第二换热器3时吸收热量,因此,在第二换热器3内热量可进行内部传递,充分利用,无需外部冷热源,节约能耗。同理,工业级一氧化二氮经过第一换热器2时放出热量,纯化后产品经过第一换热器2时吸收热量,因此,在第一换热器2内热量可进行内部传递,充分利用,无需外部冷热源,节约能耗。实施例2本实施例提供一种液化气体的纯化装置,如图2所示,包括:闪蒸塔1、产品储罐4、塔釜再沸器5和第三换热器6,第三换热器6、塔釜再沸器5和闪蒸塔1依次串联,原料进料口与第三换热器6相连,闪蒸塔1的塔顶出料口连接至第三换热器6,塔顶出料经换热后流出,闪蒸塔1的塔底出料口连接至第三换热器6,塔底出料经换热后接入产品储罐4,换热过程中塔顶出料和塔底出料不发生混合。利用上述纯化装置纯化二氧化碳的方法,包括:将含有氮气和氧气杂质的二氧化碳粗品从原料进料口进料,进料温度约-30~-15℃,压力为1.5~2.2MPaG,通过第三换热器6进行降温至-90~-50℃,再经过塔釜再沸器5后进入闪蒸塔1,塔釜再沸器5温度设定为-90~-60℃,闪蒸塔1压力设定为0~1.0MPaG,进行气液相分离,同时温度再降低到-90~-80℃,含有较高浓度氮气和氧气的气体从塔顶排出,这些低温气体在第三换热器6中被加热至-60~-30℃后排放;含有较低浓度氮气和氧气的液体沿塔下降到塔釜,被塔釜再沸器5加热再次排放杂质气体,纯度高的二氧化碳液体从塔底流出被泵输送出去,并在第三换热器6中被加热至-60~-30℃,再通入产品储罐4内存储。本实施例中二氧化碳粗品为工业级二氧化碳液体,具体参数为压力1.5~2.5MPa、温度-25℃~-15℃以及纯度>99.0%。经纯化后,产品纯度>99.999%,可应用领域广。本实施例中工业级二氧化碳经过第三换热器6时放出热量,杂质气体和纯化后产品经过第三换热器6时吸收热量,因此,在第三换热器6内热量可进行内部传递,充分利用,无需外部冷热源,节约能耗。最后,以上仅为本技术的较佳实施方案,并非用于限定本技术的保护范围。凡在本技术的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本技术的保护范围之内。本文档来自技高网...

【技术保护点】
1.一种液化气体的纯化装置,其特征在于,包括:换热系统和分离系统,所述换热系统连接在原料进料口和所述分离系统的进料口之间,所述分离系统的产品出料口连接至所述换热系统,再接入产品储罐,所述换热系统内设有传热工质,以使经过所述换热系统的物料吸收或释放热量。

【技术特征摘要】
1.一种液化气体的纯化装置,其特征在于,包括:换热系统和分离系统,所述换热系统连接在原料进料口和所述分离系统的进料口之间,所述分离系统的产品出料口连接至所述换热系统,再接入产品储罐,所述换热系统内设有传热工质,以使经过所述换热系统的物料吸收或释放热量。2.根据权利要求1所述的一种液化气体的纯化装置,其特征在于,所述换热系统包括第一换热通道和第二换热通道,所述第一换热通道的进料口连接所述原料进料口,所述第一换热通道的出料口连接所述分离系统的进料口,所述分离系统的产品出料口连接所述第二换热通道的进料口,所述第二换热通道的出料口连接所述...

【专利技术属性】
技术研发人员:代俊红王丽莉董爱娜王桂芝
申请(专利权)人:北京万机汇机电工程技术有限公司
类型:新型
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1