一种花岗岩型铀矿深部矿化信息提取方法技术

技术编号:20220885 阅读:25 留言:0更新日期:2019-01-28 19:41
本发明专利技术属于铀资源勘查技术领域,具体公开一种花岗岩型铀矿深部矿化信息提取方法:根据不同岩性或地层划分工作区地质单元;在划分后地质单元内进行土壤取样;分析各地质单元土壤样品中粘土吸附态铀含量及铀元素总量;根据上述各样品粘土吸附态铀含量与铀元素总量,计算各地质单元各样品粘土吸附态铀含量与铀元素总量的比值R;计算各地质单元样品R值的异常下限C;根据R值、异常下限C,求得各地质单元样品R值与异常下限C的比值F;以常数1为异常下限,圈定工作区F值的异常区域,确定深部铀矿勘查的找矿靶区,完成铀矿深部矿化信息提取。该方法能够大幅降低了近地表信息的干扰,有效地提取到深部铀矿化信息。

【技术实现步骤摘要】
一种花岗岩型铀矿深部矿化信息提取方法
本专利技术属于铀资源勘查
,具体涉及一种花岗岩型铀矿深部矿化信息提取方法。
技术介绍
深部隐伏矿体产生的活动形式的离子或微粒能够在地气流等多种地质营力的作用下迁移至近地表,并在近地表覆盖层中富集,形成后生叠加异常。尽管这种活动形式元素的含量较低,但却代表着深部矿化的直接信息,具有重要的找矿指示意义,因此,提取和分析活动形式的元素含量(元素活动态测量)成为目前勘查地球化学研究的热点之一。元素活动态可以划分为水提取相、粘土吸附相、有机结合相及铁锰氧化物相4种相态,这种划分方法已被勘查地球化学界普遍接受。关于元素活动态测量,研究者们进行了一系列试验及应用研究,取得了较大的技术进步和一定的应用效果。但有两个影响元素活动态测量方法应用效果的因素被大多数研究者所忽略:其一是,地表覆盖层中的元素活动态不仅来自于深部,尚有一部分是原地物质风化的产物;其二是,不同地质单元(不同岩性或地层)元素活动态含量的差异;此二因素在我国南方对于元素活动态测量效果的影响尤为突出。如何有效地降低原地物质风化产生的元素活动态的干扰,突出由深部迁移至近地表的元素活动态含量,削弱不同地质单元对元素活动态测量效果的影响,对于有效地提取深部矿化信息具有重要意义。铀元素在表生条件下,易被氧化为铀酰络阳离子,呈硕大的哑铃状,无法与其他阳离子类质同象,易被粘土矿物所吸附。在我国南方花岗岩型铀矿区的大量研究发现,土壤中粘土吸附态铀含量明显受到土壤铀全量的影响,在无矿区(认为土壤中粘土吸附态铀含量全部来自于原地土壤风化),粘土吸附态铀含量与土壤铀全量显著相关,含量变化趋势高度一致,也就是说,由原地土壤风化产生的粘土吸附态铀含量与土壤铀全量高度正相关。这使得降低原地土壤风化产生粘土吸附态铀的干扰,突出由深部迁移至近地表的粘土吸附态铀含量,有效地提取深部铀矿化信息成为可能。同时,由于不同地质单元的岩石矿物组分特征及抗风化能力的差异,不同地质单元风化产生的粘土吸附态铀含量亦有较大差异,有效地消除或削弱这种差异对于深部铀矿化信息的提取十分必要。
技术实现思路
本专利技术的目的在于提供一种花岗岩型铀矿深部矿化信息提取方法,该方法能够大幅降低近地表信息的干扰,削弱不同地质单元的影响,进而有效地提取到花岗岩型铀矿深部矿化信息。本专利技术的技术方案是:一种花岗岩型铀矿深部矿化信息提取方法,该方法包括如下步骤:步骤一、根据不同岩性或地层划分工作区地质单元;步骤二、在上述步骤一中划分后的地质单元内进行土壤取样;步骤三、分析上述步骤二中各地质单元土壤样品中粘土吸附态铀含量及铀元素总量;步骤四、根据上述步骤三中得到的各样品粘土吸附态铀含量与铀元素总量,计算各地质单元各样品粘土吸附态铀含量与铀元素总量的比值R;步骤五、计算上述步骤划分的各地质单元样品R值的异常下限C;步骤六、根据上述步骤四得到的R值、步骤五得到的异常下限C,求得各地质单元样品R值与异常下限C的比值F;步骤七、以常数1为异常下限,圈定工作区F值的异常区域,确定深部铀矿勘查的找矿靶区,完成铀矿深部矿化信息提取。所述的步骤一中将工作区划分为燕山早期第三阶段细粒小斑状二云母花岗岩、印支期中粒斑状黑云母花岗岩和第四系沉积物3个地质单元。所述的步骤二中具体包括如下步骤:在工作区的3个地质单元内均土壤取样,采集B层上部粘土;待土壤样品干燥后过筛,取-200目粒级的样品20~30g。所述的步骤三中具体包括如下步骤:从上述步骤二中得到的工作区的3个地质单元的-200目粒级的土壤样品中各自称取2.0g,置于50mL聚乙烯离心管中,加入50g/L的柠檬酸铵溶液30mL,盖上盖子于温度25±2℃下振荡2小时,而后以4000r/min的速率离心15min,将清液过滤,分取20mL滤液于25mL比色管中,用3%硝酸定容至刻度;测定溶液中铀元素含量,将所得结果换算为ng/g,即为样品中粘土吸附态铀含量;获得3个地质单元内各土壤样品的粘土吸附态铀含量;从上述步骤二中得到的工作区的3个地质单元各自取-200目土壤样品10~15g,分析其铀元素总量,获得3个地质单元内各土壤样品的铀元素总量。所述的步骤五中分别计算3个地质单元内土壤样品R值的异常下限C,C取值为该地质单元内各样品R值算术平均数的1.2倍,所述的步骤五中燕山早期第三阶段细粒小斑状二云母花岗岩区R值的异常下限为0.132,印支期中粒斑状黑云母花岗岩区R值的异常下限为0.147,第四系沉积物区R值的异常下限为0.116。所述的步骤六中分别计算3个地质单元内,土壤样品R值与该地质单元异常下限C的比值F,即F=R/C;F值为各样品的异常衬值,F≥1,为异常样品。所述的步骤七中以自然常数1为异常下限,绘制工作区各样品F值的地球化学异常图,所圈定的异常区域即为深部铀矿勘查的找矿靶区。所述的步骤七中在燕山早期第三阶段细粒小斑状二云母花岗岩区圈定异常区域2片,在印支期中粒斑状黑云母花岗岩区圈定异常区域1片,此3片区域可作为深部铀矿勘查的找矿靶区。所述的步骤二中在工作区的3个地质单元内均按照250m×50m的网度进行土壤取样;所述的步骤三中采用ICP-MS方法测定溶液中铀元素含量,采用等离子体质谱法分析其铀元素总量;所述的步骤七中采用反距离权重法作为插值方法,绘制工作区各样品F值的地球化学异常图。本专利技术的有益效果是:本专利技术使用粘土吸附态铀含量与土壤铀全量的比值R作为地球化学指标能够有效地降低原地土壤风化产生的粘土吸附态铀含量的影响,突出由深部迁移至近地表的粘土吸附态铀含量,从而大幅降低了近地表信息的干扰,进而有效地提取到深部铀矿化信息。分不同地质单元分别计算R值的异常下限C,可有效地削弱不同地质单元R值整体高低的差异,降低不同地质单元风化产生的粘土吸附态铀含量差异较大的影响,避免了高R值地质单元对其他地质单元深部矿化信息的“掩蔽”。以F值为地球化学指标圈定异常,可将不同地质单元的异常下限C“归一化”为自然常数1,大大降低了因各地质单元异常下限不一造成的工作区异常圈定的复杂度及成图难度。附图说明图1为本专利技术所提供的一种花岗岩型铀矿深部矿化信息提取方法的流程图。具体实施方式下面结合附图及具体实施例对本专利技术作进一步详细说明:以我国南方某花岗岩型铀矿外围勘查为例,勘查比例尺为1:250000,网度为250m×50m,测线走向垂直于主断裂构造方向,为135°,工作区面积为12.5Km2。如图1所示,本专利技术所提供的一种花岗岩型铀矿深部矿化信息提取方法,该方法包括以下步骤:步骤一、根据不同岩性或地层划分工作区地质单元:工作区共分布有3种岩性或地层,分别为燕山早期第三阶段细粒小斑状二云母花岗岩、印支期中粒斑状黑云母花岗岩和第四系沉积物,据此3种不同的岩性或地层,将工作区划分为3个地质单元。步骤二、在上述步骤一中划分后的3个地质单元内进行土壤取样,具体取样步骤均如下:在工作区的3个地质单元内均按照250m×50m的网度进行土壤取样,采集B层上部粘土。待土壤样品干燥后过筛,取-200目粒级的样品20~30g。步骤三、分析上述步骤二中各地质单元土壤样品中粘土吸附态铀含量及铀元素总量,具体分析步骤均如下:从上述步骤二中得到的工作区的3个地质单元的-200目粒级的土壤样品中各自称取2.0本文档来自技高网
...

【技术保护点】
1.一种花岗岩型铀矿深部矿化信息提取方法,其特征在于,该方法包括如下步骤:步骤一、根据不同岩性或地层划分工作区地质单元;步骤二、在上述步骤一中划分后的地质单元内进行土壤取样;步骤三、分析上述步骤二中各地质单元土壤样品中粘土吸附态铀含量及铀元素总量;步骤四、根据上述步骤三中得到的各样品粘土吸附态铀含量与铀元素总量,计算各地质单元各样品粘土吸附态铀含量与铀元素总量的比值R;步骤五、计算上述步骤划分的各地质单元样品R值的异常下限C;步骤六、根据上述步骤四得到的R值、步骤五得到的异常下限C,求得各地质单元样品R值与异常下限C的比值F;步骤七、以常数1为异常下限,圈定工作区F值的异常区域,确定深部铀矿勘查的找矿靶区,完成铀矿深部矿化信息提取。

【技术特征摘要】
1.一种花岗岩型铀矿深部矿化信息提取方法,其特征在于,该方法包括如下步骤:步骤一、根据不同岩性或地层划分工作区地质单元;步骤二、在上述步骤一中划分后的地质单元内进行土壤取样;步骤三、分析上述步骤二中各地质单元土壤样品中粘土吸附态铀含量及铀元素总量;步骤四、根据上述步骤三中得到的各样品粘土吸附态铀含量与铀元素总量,计算各地质单元各样品粘土吸附态铀含量与铀元素总量的比值R;步骤五、计算上述步骤划分的各地质单元样品R值的异常下限C;步骤六、根据上述步骤四得到的R值、步骤五得到的异常下限C,求得各地质单元样品R值与异常下限C的比值F;步骤七、以常数1为异常下限,圈定工作区F值的异常区域,确定深部铀矿勘查的找矿靶区,完成铀矿深部矿化信息提取。2.根据步骤1所述的一种花岗岩型铀矿深部矿化信息提取方法,其特征在于:所述的步骤一中将工作区划分为燕山早期第三阶段细粒小斑状二云母花岗岩、印支期中粒斑状黑云母花岗岩和第四系沉积物3个地质单元。3.根据步骤2所述的一种花岗岩型铀矿深部矿化信息提取方法,其特征在于,所述的步骤二中具体包括如下步骤:在工作区的3个地质单元内均土壤取样,采集B层上部粘土;待土壤样品干燥后过筛,取-200目粒级的样品20~30g。4.根据步骤3所述的一种花岗岩型铀矿深部矿化信息提取方法,其特征在于,所述的步骤三中具体包括如下步骤:从上述步骤二中得到的工作区的3个地质单元的-200目粒级的土壤样品中各自称取2.0g,置于50mL聚乙烯离心管中,加入50g/L的柠檬酸铵溶液30mL,盖上盖子于温度25±2℃下振荡2小时,而后以4000r/min的速率离心15min,将清液过滤,分取20mL滤液于25mL比色管中,用3%硝酸定容至刻度;测定溶液中铀元素含量,将所得结果换算为ng/g,即为样品中粘土吸附态铀含量;获得3个地质单元内各土壤样品的粘...

【专利技术属性】
技术研发人员:吴国东王勇宋亮朱万锋王东升
申请(专利权)人:核工业北京地质研究院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1