一种用于核磁共振成像质量控制的数据处理方法技术

技术编号:20161832 阅读:24 留言:0更新日期:2019-01-19 00:14
本发明专利技术公开了一种用于核磁共振成像质量控制的数据处理方法,首先获取磁共振水模体的MRI图像,并通过图像边缘检测算法提取出磁共振水模体中小球的灰度值;然后利用MRI图像的空域信息、频域低频信息及相关系数,建立初始最小二乘法支持向量机的模型,再通过由粒子群算法优化的最小二乘支持向量机进行计算,最终输出并记录相应数据,最后将其结果与对应的核磁共振参数做对比,进而判断核磁共振成像设备是否合格,具有计算量小、计算速度快、计算精度高的优点,能够准确地判断核磁共振成像设备是否合格,从而保证每一个磁共振检查者的生命安全。

【技术实现步骤摘要】
一种用于核磁共振成像质量控制的数据处理方法
本专利技术涉及核磁共振成像
,尤其涉及一种用于核磁共振成像质量控制的数据处理方法。
技术介绍
核磁共振成像(MagneticResonanceImaging)是目前最先进的医学成像技术之一,其主要原理是通过不同的射频脉冲信号对生物组织进行激励,利用线圈梯度场对组织进行空间定位,并利用接收线圈检测组织的弛豫时间和质子密度信息,从而形成组织图像。它能够从人体分子内部反映出人体器官失常和早期病变。临床医师通过MRI图像对患者的疾病进行诊断,除了和医师本人的临床经验有关外,还与图像中所包含的信息量密切相关。因此对核磁共振成像(QualityControl,QC)的质量控制是确保每一个磁共振检查者的生命安全以及疾病得到治疗的根本保证。目前最常见的质量控制方法是通过磁共振水模体在核磁共振下生成的影像,工作人员通过测试图像得到的数据进行计算分析,进而得到核磁共振成像设备的各种性能指标。而磁共振成像设备得到的图像,一般具有较大的信息量,那么如何从这些数据中得到所需要的信息与参数,是一个长期困扰众多专家学者的难题。近几年发展起来的支持向量机(SupportVectorMachines,SVM)为解决该类问题提供了一种新的思路。支持向量机建立在统计学习理论的VC维理论和结构风险最小原理基础上,作为支持向量机的扩展,最小二乘支持向量机有效地解决了SVM处理大样本数据时速度慢等问题。核磁共振成像设备所探测的核磁共振信号与每个像素内被测对象某元素的质子密度ρ、表观扩散(弥散)系数、豫驰时间T1及豫驰时间T2有关,这些信息全部存在于核磁共振成像设备所输出的图像中,一般可以表示为:在实际操作中,上述这些信息均会呈现在MRI图像的灰度信息中,却并不能在磁共振设备中给出以上全部的数据,从而给磁共振设备的质量检查造成困难。
技术实现思路
本专利技术的目的在于提供一种用于核磁共振成像质量控制的数据处理方法,能够根据磁共振水模体的MRI图像,对磁共振成像设备的质量进行检测,保证每一个磁共振检查者的生命安全。为实现上述目的,本专利技术采用如下技术方案:一种用于核磁共振成像质量控制的数据处理方法,依次包括以下步骤:Step1:选择参数区域及层厚,并选定各个参数,包括驰豫时间T1、驰豫时间T2、质子密度ρ及表观扩散系数ADC;Step2:获取磁共振水模体的MRI图像,并通过图像边缘检测算法提取出磁共振水模体中小球的灰度值;Step3:根据提取出的小球的灰度值分别进行以下计算:(1)将Step2中提取出的小球的灰度值进行小波阈值滤波,并计算小球的平均灰度值与方差,该部分主要目的是获取小球的空域信息;(2)将Step2中提取出的小球的灰度值进行傅里叶变换,得到小球图像的频谱图,根据该频谱图的频率分布情况,截取频谱图中心位置,并求取该部分的平均模长,以便获取小球的频域低频信息;(3)对小球成像的区域首先求取质心位置,根据质心位置将小球的成像区域分成3X3共9个区域,其中,该9个区域中包含质心位置所在的区域及其灰度值矩阵内数据,将质心所在灰度值矩阵内的数据分别与剩余的八个区域所对应的灰度值矩阵内的数据求相关系数,最后求8个相关系数的平均值;对于数字图像而言每一个区域对应一个灰度值矩阵,小球所成的像的封闭区域外的灰度值默认为零,封闭区域内的灰度为原MRI图像对应坐标的灰度值;Step4:将Step3中得到的空域信息、频域低频信息及相关系数,作为最小二乘支持向量机的输入向量,通过由粒子群算法优化的最小二乘支持向量机进行计算,最终输出记录相应数据;Step5:根据以下公式求出偏离率:其中,E为标准值,表示豫驰时间T1、豫驰时间T2和质子密度ρ中的某一个参数,E′为Step4中的计算结果,E′与标准值E表示同一参数;若P小于设定值,则该磁共振成像设备合格,若P大于等于设定值,则该磁共振成像设备不合格,并给出不合格的参数。优选地,所述step4中,最小二乘支持向量机的惩罚因子和核函数的计算过程如下:假设输入数据为实数集采用函数:则拟合的一般目标是使得残差平方和最小,即求下式的最小值及其参数:下式为本专利技术使用的惩罚函数:这里利用拉格朗日数乘法求解,最终可以得到如下形式:其中,αk和b均为拉格朗日参数,k(x,xi)表示核函数。优选地,所述step4中,在粒子群算法中,假设种群中每一个粒子所在搜索空间为n维(n=1,2,…,n),每一个粒子的速度向量和位置向量分别为vi=(vi1,vi2,vi3…vin)和xi=(xi1,xi2,xi3…xin),其中,i表示种群中的第i个粒子,i=1,2,…i,则对粒子i的第d(d=1,2,3......n)维进行更新时的公式为:xid(t+1)=vid(t)+xid(t)(2)其中,w为惯性系数,C1和C1分别表示粒子的自身学习因子和社会学习因子,r1和r2是介于0~1之间相互独立的两个随机数,p_bestid(t)和g_bestd(t)分别是粒子i的最好位置和群体最好位置的第d维分量,t表示更新次数;优选地,所述惯性系数w采用自适应变化的惯性权重系数:w=(Tmax-t)2(wmax-wmin)+wmin其中,Tmax是粒子群算法的最大更新次数,t为当前更新次数,wmax和wmin根据经验选取,wmax=0.9,wmin=0.35。本专利技术利用MRI图像的空域信息、频域低频信息及相关系数,建立初始最小二乘法支持向量机的模型,然后通过由粒子群算法优化的最小二乘支持向量机进行计算,并记录输出的数据,最后将其结果与对应的核磁共振参数做对比,进而判断核磁共振成像设备是否合格,具有计算量小、计算速度快、计算精度高的优点,能够准确地判断核磁共振成像设备是否合格,从而保证每一个磁共振检查者的生命安全。附图说明图1为本专利技术的流程图;图2为本专利技术所述ADC层的MRI图像;图3为通过图像边缘检测算法提取后的结果;图4为本专利技术所述小球图像的频谱图;图5为本专利技术所述小球的成像区域分割示意图。具体实施方式以下结合附图对本专利技术的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术的部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其他所有实施例,都属于本专利技术的保护范围。如图1至图5所示,本专利技术所述的一种用于核磁共振成像质量控制的数据处理方法,依次包括以下步骤:Step1:选择参数区域及层厚,并选定各个参数,包括驰豫时间T1、驰豫时间T2、质子密度ρ及表观扩散系数ADC;Step2:获取磁共振水模体的MRI图像,并通过图像边缘检测算法提取出磁共振水模体中小球的灰度值;利用图像边缘检测算法提取出磁共振水模体中小球的灰度值的过程为现有技术,不再赘述。Step3:根据提取出的小球的灰度值分别进行以下计算:(1)将Step2中提取出的小球的灰度值进行小波阈值滤波,并计算小球的平均灰度值与方差,该部分主要目的是获取小球的空域信息;(2)将Step2中提取出的小球的灰度值进行傅里叶变换,得到小球图像的频谱图,根据该频谱图的频率分布情况,截取频谱图中心位置,并求取该部分的平均模长,以便获取小球的频域低频信息;如图4所示,圆框内为截取出的频谱图的中心位置。(3)本文档来自技高网
...

【技术保护点】
1.一种用于核磁共振成像质量控制的数据处理方法,其特征在于,依次包括以下步骤:Step1:选择参数区域及层厚,并选定各个参数,包括驰豫时间T1、驰豫时间T2、质子密度ρ及表观扩散系数ADC;Step2:获取磁共振水模体的MRI图像,并通过图像边缘检测算法提取出磁共振水模体中小球的灰度值;Step3:根据提取出的小球的灰度值分别进行以下计算:(1)将Step2中提取出的小球的灰度值进行小波阈值滤波,并计算小球的平均灰度值与方差,该部分主要目的是获取小球的空域信息;(2)将Step2中提取出的小球的灰度值进行傅里叶变换,得到小球图像的频谱图,根据该频谱图的频率分布情况,截取频谱图中心位置,并求取该部分的平均模长,以便获取小球的频域低频信息;(3)对小球成像的区域首先求取质心位置,根据质心位置将小球的成像区域分成3X3共9个区域,其中,该9个区域中包含质心位置所在的区域及其灰度值矩阵内数据,将质心所在灰度值矩阵内的数据分别与剩余的八个区域所对应的灰度值矩阵内的数据求相关系数,最后求8个相关系数的平均值;对于数字图像而言每一个区域对应一个灰度值矩阵,小球所成的像的封闭区域外的灰度值默认为零,封闭区域内的灰度为原MRI图像对应坐标的灰度值;Step4:将Step3中得到的空域信息、频域低频信息及相关系数,作为最小二乘支持向量机的输入向量,通过由粒子群算法优化的最小二乘支持向量机进行计算,最终输出记录相应数据;Step5:根据以下公式求出偏离率:...

【技术特征摘要】
1.一种用于核磁共振成像质量控制的数据处理方法,其特征在于,依次包括以下步骤:Step1:选择参数区域及层厚,并选定各个参数,包括驰豫时间T1、驰豫时间T2、质子密度ρ及表观扩散系数ADC;Step2:获取磁共振水模体的MRI图像,并通过图像边缘检测算法提取出磁共振水模体中小球的灰度值;Step3:根据提取出的小球的灰度值分别进行以下计算:(1)将Step2中提取出的小球的灰度值进行小波阈值滤波,并计算小球的平均灰度值与方差,该部分主要目的是获取小球的空域信息;(2)将Step2中提取出的小球的灰度值进行傅里叶变换,得到小球图像的频谱图,根据该频谱图的频率分布情况,截取频谱图中心位置,并求取该部分的平均模长,以便获取小球的频域低频信息;(3)对小球成像的区域首先求取质心位置,根据质心位置将小球的成像区域分成3X3共9个区域,其中,该9个区域中包含质心位置所在的区域及其灰度值矩阵内数据,将质心所在灰度值矩阵内的数据分别与剩余的八个区域所对应的灰度值矩阵内的数据求相关系数,最后求8个相关系数的平均值;对于数字图像而言每一个区域对应一个灰度值矩阵,小球所成的像的封闭区域外的灰度值默认为零,封闭区域内的灰度为原MRI图像对应坐标的灰度值;Step4:将Step3中得到的空域信息、频域低频信息及相关系数,作为最小二乘支持向量机的输入向量,通过由粒子群算法优化的最小二乘支持向量机进行计算,最终输出记录相应数据;Step5:根据以下公式求出偏离率:其中,E为标准值,表示豫驰时间T1、豫驰时间T2和质子密度ρ中的某一个参数,E′为Step4中的计算结果,E′与标准值E表示同一参数;若P小于设定值,则该磁共振成像设备合格,若P大于...

【专利技术属性】
技术研发人员:于坤焦青亮刘子龙刘玉芳
申请(专利权)人:河南师范大学
类型:发明
国别省市:河南,41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1