裂隙试样渗流传热过程中水岩界面对流换热系数测量装置制造方法及图纸

技术编号:20112702 阅读:19 留言:0更新日期:2019-01-16 11:12
本发明专利技术公开了一种裂隙试样渗流传热过程中水岩界面对流换热系数测量装置。通过液体恒压恒流高精度注入系统和冷驱热水流恒温控制系统向对流换热系数测试系统注入恒温恒流的水流,再通过对流换热系数测试系统测量水岩界面对流换热系数h,在测量时与之有关的变量,如流量、进口水温Tin2、裂隙初始隙宽b0、裂隙隙宽变形Δb、试样外表面温度T0都能按实验者要求设定,试验测量的变量,如出口水流量Q、裂隙出口水温Tout、裂隙内沿程水温Tf、裂隙内表面温度Ti都能被精确测量,最终计算得到对流换热系数h。本发明专利技术控制变量更加精确,可以通过改进的计算方法得出某种状态下的对流换热系数h的数值,并能够研究h与不同变量之间的定量关系。

Measuring device for convective heat transfer coefficient of water-rock interface in seepage heat transfer process of fractured specimens

The invention discloses a device for measuring convective heat transfer coefficient of water-rock interface in the process of seepage heat transfer of fracture sample. The constant-temperature and constant-flow water flow is injected into the convective heat transfer coefficient measurement system through the constant-pressure and constant-flow high-precision injection system and the constant-temperature control system of cold drive hot water flow. Then the convective heat transfer coefficient h at the water-rock interface is measured by the convective heat transfer coefficient measurement system. Variables related to the measurement, such as flow rate, inlet water temperature Tin2, initial crack width b0, crack width deformation b, specimen appearance, are measured. Surface temperature T0 can be set according to the requirements of the experimenter. Variables measured by the experiment, such as outlet water flow Q, outlet water temperature Tout, temperature Tf along the crack and temperature Ti on the inner surface of the crack, can be accurately measured. Finally, the convective heat transfer coefficient h can be calculated. The control variable of the invention is more precise, and the value of convective heat transfer coefficient h under a certain state can be obtained by an improved calculation method, and the quantitative relationship between H and different variables can be studied.

【技术实现步骤摘要】
裂隙试样渗流传热过程中水岩界面对流换热系数测量装置
本专利技术涉及一种对流换热系数的测算装置,具体是一种裂隙试样渗流传热过程中水岩界面对流换热系数测量装置,属于矿山地热与热害防治领域。
技术介绍
随着我国东部及部分中部地区进入深地开采,高地温矿井越来越普遍,针对深循环上升地下水引起的高热异常矿井,其地热资源进行主动利用或被动防治成为绿色矿山新的研究方向。该研究课题需要解决的关键问题包括岩体裂隙网络中水-热迁移特性研究,其中进行单裂隙水-热迁移特性试验研究是基础工作。上述公式是单裂隙渗流传热过程中岩石温度场、裂隙水温度场模型,上述公式中,国内外研究对岩体中热传导、流体内部热传导和热对流有准确描述,但是针对水-岩界面热量交换缺乏系统研究,其中对流换热系数h(下文简称h)决定基岩和裂隙水之间的热量交换,针对裂隙系统的传热,目前对h的取值没有合适的经验公式或者精确的理论,而且有关试验少之又少。在国内外很多研究中,基本上是将水-岩界面的对流换热系数h等效为定值或忽略(局部热平衡假设),这样处理使得问题简化,但是在实际情况下这是不合适的,对流换热系数h是一个动态值,和流速v、隙宽b,水岩界面几何特征、水岩的热物理性质等有关,基于此,详细测量某种状态下的水岩界面对流换热系数h及定量表征h和上述变量的关系具有重要意义,如能将合理的对流换热系数应用于裂隙网络渗流-传热数值模拟,在模拟中根据不同的模拟条件对h动态赋值,能够使得最终的模拟结果更加准确,对于生产具有指导意义。
技术实现思路
针对上述现有技术存在的问题,本专利技术的目的是提供一种裂隙试样渗流传热过程中水岩界面对流换热系数测量装置,可以测算不同状态下水岩界面对流换热系数,定量研究水岩界面对流换热系数与不同环境变量之间的关系。为实现上述目的,本专利技术采用的技术方案是:一种裂隙试样渗流传热过程中水岩界面对流换热系数测量装置,包括液体恒压恒流高精度注入系统、冷驱热水流恒温控制系统、对流换热系数测试系统,所述液体恒压恒流高精度注入系统包括恒压恒流双缸泵和连接在恒压恒流双缸泵入口上的冷水容器;所述冷驱热水流恒温控制系统包括并排设在一恒温箱中的第一双向活塞缸和第二双向活塞缸,所述第一双向活塞缸的一端开口通过输水管线分别连接至一第一转换阀、一第二转换阀的一端,第二转换阀的另一端连通至大气,所述第二双向活塞缸的一端开口通过输水管线分别连接至一第三转换阀、一第四转换阀的一端,第三转换阀的另一端连通至大气,第一转换阀的另一端、第四转换阀的另一端通过输水管线共同连接至恒压恒流双缸泵的出口;所述第一双向活塞缸的另一端开口通过输水管线分别连接至一第五转换阀、一第六转换阀的一端,第二双向活塞缸的另一端开口通过输水管线分别连接至一第七转换阀、一第八转换阀的一端,第六转换阀、第七转换阀的另一端通过输水管线共同连接至一补液泵的泵出口,补液泵的泵入口与一高低温恒温水浴连接;所述对流换热系数测试系统包括夹持器,所述夹持器包括套筒,所述套筒中与其同轴设有胶套,套筒内壁与胶套外壁之间设有围压腔,且套筒外设有围压加载装置;一入口假岩芯和一入口堵头依次从夹持器的入口侧塞入胶套中,且夹持器的入口侧设有入口端盖,一出口假岩芯和一出口堵头依次从夹持器的出口侧塞入胶套中,所述入口假岩芯和出口假岩芯沿各自中轴线分别设有水流通道,且入口假岩芯和出口假岩芯彼此相对的侧面上各自从中心沿径向发散设有多个渗流槽;所述入口堵头中与其中轴线平行设有两条水流通孔,一条水流通孔通过管线Ⅰ连通至第五转换阀、第八转换阀的另一端,管线Ⅰ上设有阀门Ⅰ和温度传感器,另一条水流通孔通过管线Ⅱ连通至外部,管线Ⅱ上设有阀门Ⅱ;所述入口假岩芯、出口假岩芯、胶套围成的空腔中设有单裂隙试样,单裂隙试样中沿其长度方向间隔分布设有多个测试孔组,所述测试孔组包括一从单裂隙试样外壁沿其径向通至裂隙面的通孔和一从单裂隙试样外壁向内开设的沉孔,所述沉孔的底部靠近裂隙面;所述入口假岩芯和出口假岩芯中各自以水流通道为起点沿径向延伸设有检测通道,所述各检测通道、通孔和沉孔中皆设有测温线,所述测温线皆通过出口堵头中设置的布线槽引出夹持器,所述出口堵头中心沿其轴向设有水流引出孔,水流引出孔露出出口堵头的一端通过出水管连接至一出水流量计,所述出水管上设有三通阀和背压阀;所述套筒外部设有隙宽测量装置,所述隙宽测量装置的探头垂直于裂隙面穿过套筒和胶套并顶住单裂隙试样的外壁;所述温度传感器、测温线引出夹持器的端部、隙宽测量装置、出水流量计、各压力传感器共同连接至一数据采集器上。优选的,还包括一控制器,所述第一双向活塞缸、第二双向活塞缸外部分别设有一位移传感器,第一双向活塞缸、第二双向活塞缸的活塞分别连接至对应的位移传感器,所述位移传感器与控制器的输入端连接,控制器的输出端分别与各转换阀连接。优选的,所述围压加载装置包括环压泵和加热套,所述环压泵的出口通过加压管路连接至套筒上设置的进油孔,套筒上的出油孔通过卸压管路连接至大气中,且加压管路上设有开关,卸压管路上设有排气阀;所述加热套套在套筒上。先加热套筒,热量会由套筒向内传输至压力油、胶套并传至单裂隙试样表面。还包括一循环泵,循环泵的一端通过循环阀Ⅰ连接至加压管路上,所述卸压管路在出油孔和排气阀之间设有循环阀Ⅱ,循环泵的另一端连接至排气阀与循环阀Ⅱ之间的卸压管路段。循环泵可对围压腔中的压力油进行持续循环,避免传热导致不同位置的油温出现差异,保证围压腔中的压力油各处油温均匀;循环泵具有加热功能时还可以对压力油因传热至水流损失的热量及时补偿,保证单裂隙试样外表面温度始终稳定。出口假岩芯朝向出口堵头的侧面环绕水流通道设有一O型圈,O型圈设在出口假岩芯与出口堵头之间,可以有效防止从水流通道流出的水直接进入布线槽中损坏测温线。布线槽露出夹持器的槽口上设有耐压软垫,所述耐压软垫由三层软垫材料组成,分别为聚酰亚胺、聚四氟乙烯、聚酰亚胺材料,测温线穿过耐压软垫并引出夹持器,耐压软垫具有耐压的特点,可以紧紧固定住测温线。优选的,隙宽测量装置包括LVDT位移传感器,隙宽测量平台的探头与LVDT位移传感器连接,能够根据隙宽选择量程,可以测量试样裂隙的垂直变形量△b,且LVDT位移传感器连接至数据采集器上。为了减少水流从夹持器入口流入裂隙的热量损失,入口堵头采用非金属聚酰亚胺材料,入口假岩芯采用聚四氟乙烯材料,采用这样的材料导热效率低,进一步缩小了夹持器入口水温与夹持器中的裂隙入口水温之间的差值,也尽可能减少了夹持器入口端压力油的温度对水流的传热影响。相对于现有技术,本专利技术具有如下优势:①本专利技术的冷驱热水流恒温控制系统通过控制两个双向活塞缸交替工作,将冷水作为动力驱动热水进入夹持器,高低温恒温水浴为主热源(温度波动范围为±0.05℃),外部的恒温箱为辅助热源,可以实时补偿管路中热量损失,可以将出口水温误差控制在±0.5℃,能够为试验提供恒温的水流,双向活塞缸交替平稳工作也为夹持器提供了稳定的水流,消除了脉冲;②本装置改变了传统的水流恒温思路,不考虑恒压恒流双缸泵注入管路段的水流保温问题,只需要保证高低温恒温水浴中的小范围液体恒温即可,将大范围加热保温难题转变为小范围加热保温,提高了恒温控制的精度,且设备体积小不受空间限制,温度损失很小;夹持器出口液体还可以回流到本文档来自技高网...

【技术保护点】
1.一种裂隙试样渗流传热过程中水岩界面对流换热系数测量装置,其特征在于,包括液体恒压恒流高精度注入系统、冷驱热水流恒温控制系统、对流换热系数测试系统,所述液体恒压恒流高精度注入系统包括恒压恒流双缸泵(1)和连接在恒压恒流双缸泵(1)入口上的冷水容器(2);所述冷驱热水流恒温控制系统包括并排设在一恒温箱(8)中的第一双向活塞缸(61)和第二双向活塞缸(62),所述第一双向活塞缸(61)的一端开口通过输水管线分别连接至一第一转换阀(V1)、一第二转换阀(V2)的一端,第二转换阀(V2)的另一端连通至大气,所述第二双向活塞缸(62)的一端开口通过输水管线分别连接至一第三转换阀(V3)、一第四转换阀(V4)的一端,第三转换阀(V3)的另一端连通至大气,第一转换阀(V1)的另一端、第四转换阀(V4)的另一端通过输水管线共同连接至恒压恒流双缸泵(1)的出口;所述第一双向活塞缸(61)的另一端开口通过输水管线分别连接至一第五转换阀(V5)、一第六转换阀(V6)的一端,第二双向活塞缸(62)的另一端开口通过输水管线分别连接至一第七转换阀(V7)、一第八转换阀(V8)的一端,第六转换阀(V6)、第七转换阀(V7)的另一端通过输水管线共同连接至一补液泵(4)的泵出口,补液泵(4)的泵入口与一高低温恒温水浴(3)连接;所述对流换热系数测试系统包括夹持器,所述夹持器包括套筒(9),所述套筒(9)中与其同轴设有胶套(10),套筒(9)内壁与胶套(10)外壁之间设有围压腔,且套筒(9)外设有围压加载装置;一入口假岩芯(12)和一入口堵头(11)依次从夹持器的入口侧塞入胶套(10)中,且夹持器的入口侧设有入口端盖(15),一出口假岩芯(34)和一出口堵头(35)依次从夹持器的出口侧塞入胶套(10)中,所述入口假岩芯(12)和出口假岩芯(34)沿各自中轴线分别设有水流通道(40),且入口假岩芯(12)和出口假岩芯(34)彼此相对的侧面上各自从中心沿径向发散设有多个渗流槽(37);所述入口堵头(11)中与其中轴线平行设有两条水流通孔,一条水流通孔通过管线Ⅰ(33)连通至第五转换阀(V5)、第八转换阀(V8)的另一端,管线Ⅰ(33)上设有阀门Ⅰ(33‑1)和温度传感器(18),另一条水流通孔通过管线Ⅱ(32)连通至外部,管线Ⅱ(32)上设有阀门Ⅱ(32‑1);所述入口假岩芯(12)、出口假岩芯(34)、胶套(10)围成的空腔中设有单裂隙试样(13),单裂隙试样(13)中沿其长度方向间隔分布设有多个测试孔组,所述测试孔组包括一从单裂隙试样(13)外壁沿其径向通至裂隙面(13‑3)的通孔(13‑1)和一从单裂隙试样(13)外壁向内开设的沉孔(13‑2),所述沉孔(13‑2)的底部靠近裂隙面(13‑3);所述入口假岩芯(12)和出口假岩芯(34)中各自以水流通道(40)为起点沿径向延伸设有检测通道(50),所述各检测通道(50)、通孔(13‑1)和沉孔(13‑2)中皆设有测温线(21),所述测温线(21)皆通过出口堵头(35)中设置的布线槽(17)引出夹持器,所述出口堵头(35)中心沿其轴向设有水流引出孔(35‑1),水流引出孔(35‑1)露出出口堵头(35)的一端通过出水管连接至一出水流量计(60),所述出水管上设有三通阀(31)和背压阀(19);所述套筒(9)外部设有隙宽测量装置(14),所述隙宽测量装置(14)的探头(14‑1)垂直于裂隙面(13‑3)穿过套筒(9)和胶套(10)并顶住单裂隙试样(13)的外壁;所述温度传感器(18)、测温线(21)引出夹持器的端部、隙宽测量装置(14)、出水流量计(60)、各压力传感器共同连接至一数据采集器(70)上。...

【技术特征摘要】
1.一种裂隙试样渗流传热过程中水岩界面对流换热系数测量装置,其特征在于,包括液体恒压恒流高精度注入系统、冷驱热水流恒温控制系统、对流换热系数测试系统,所述液体恒压恒流高精度注入系统包括恒压恒流双缸泵(1)和连接在恒压恒流双缸泵(1)入口上的冷水容器(2);所述冷驱热水流恒温控制系统包括并排设在一恒温箱(8)中的第一双向活塞缸(61)和第二双向活塞缸(62),所述第一双向活塞缸(61)的一端开口通过输水管线分别连接至一第一转换阀(V1)、一第二转换阀(V2)的一端,第二转换阀(V2)的另一端连通至大气,所述第二双向活塞缸(62)的一端开口通过输水管线分别连接至一第三转换阀(V3)、一第四转换阀(V4)的一端,第三转换阀(V3)的另一端连通至大气,第一转换阀(V1)的另一端、第四转换阀(V4)的另一端通过输水管线共同连接至恒压恒流双缸泵(1)的出口;所述第一双向活塞缸(61)的另一端开口通过输水管线分别连接至一第五转换阀(V5)、一第六转换阀(V6)的一端,第二双向活塞缸(62)的另一端开口通过输水管线分别连接至一第七转换阀(V7)、一第八转换阀(V8)的一端,第六转换阀(V6)、第七转换阀(V7)的另一端通过输水管线共同连接至一补液泵(4)的泵出口,补液泵(4)的泵入口与一高低温恒温水浴(3)连接;所述对流换热系数测试系统包括夹持器,所述夹持器包括套筒(9),所述套筒(9)中与其同轴设有胶套(10),套筒(9)内壁与胶套(10)外壁之间设有围压腔,且套筒(9)外设有围压加载装置;一入口假岩芯(12)和一入口堵头(11)依次从夹持器的入口侧塞入胶套(10)中,且夹持器的入口侧设有入口端盖(15),一出口假岩芯(34)和一出口堵头(35)依次从夹持器的出口侧塞入胶套(10)中,所述入口假岩芯(12)和出口假岩芯(34)沿各自中轴线分别设有水流通道(40),且入口假岩芯(12)和出口假岩芯(34)彼此相对的侧面上各自从中心沿径向发散设有多个渗流槽(37);所述入口堵头(11)中与其中轴线平行设有两条水流通孔,一条水流通孔通过管线Ⅰ(33)连通至第五转换阀(V5)、第八转换阀(V8)的另一端,管线Ⅰ(33)上设有阀门Ⅰ(33-1)和温度传感器(18),另一条水流通孔通过管线Ⅱ(32)连通至外部,管线Ⅱ(32)上设有阀门Ⅱ(32-1);所述入口假岩芯(12)、出口假岩芯(34)、胶套(10)围成的空腔中设有单裂隙试样(13),单裂隙试样(13)中沿其长度方向间隔分布设有多个测试孔组,所述测试孔组包括一从单裂隙试样(13)外壁沿其径向通至裂隙面(13-3)的通孔(13-1)和一从单裂隙试样(13)外壁向内开设的沉孔(13-2),所述沉孔(13-2)的底部靠近裂隙面(13-3);所述入口假岩芯(12)和出口假岩芯(34)中各自以水流通道(40)为起点沿径向延伸设有检测通道(50),所述各检测通道(50)、通孔(13-1)和沉孔(13-2)中皆设有测温线(21),所述测温线(21)皆通过出口堵...

【专利技术属性】
技术研发人员:万志军王骏辉张源丁根荣程敬义张洪伟
申请(专利权)人:中国矿业大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1