基于交变电场的反射型绝对式时栅角位移传感器制造技术

技术编号:20110832 阅读:50 留言:0更新日期:2019-01-16 10:48
本发明专利技术公开了一种基于交变电场的反射型绝对式时栅角位移传感器,包括转子基体和定子基体,转子基体下表面设有反射电极、感应电极Ⅰ和感应电极Ⅱ,感应电极Ⅰ、Ⅱ分别与反射电极相连;定子基体上表面设有接收电极、激励电极Ⅰ和激励电极Ⅱ,首先对激励电极Ⅱ的四个激励相分别施加四路激励信号,此时激励电极Ⅰ不工作,在接收电极上输出第一路差动或者粗测正弦行波信号并存储,然后将四路激励信号切换到激励电极Ⅰ的四个激励相,此时激励电极Ⅱ不工作,在接收电极上输出第二路差动或者精测正弦行波信号,经相关处理后得到绝对角位移值。该传感器以相对简单的分时复用结构便能实现高精度绝对角位移测量,转子无需引线,工业适应性更强。

Reflective absolute time grating angular displacement sensor based on alternating electric field

The invention discloses a reflective absolute time grating angular displacement sensor based on alternating electric field, which comprises a rotor base body and a stator base body. A reflection electrode, an induction electrode I and an induction electrode II are arranged on the bottom surface of the rotor base body, and the induction electrodes I and II are connected with the reflective electrodes respectively. A receiving electrode, an excitation electrode I and an excitation electrode II are arranged on the surface of the stator base body. Four excitation phases of electrode II are respectively applied with four excitation signals. At this time, the excitation electrode I does not work. The first differential or rough sinusoidal traveling wave signal is output on the receiving electrode and stored. Then the four excitation signals are switched to the four excitation phases of excitation electrode I. At this time, the excitation electrode II does not work and the second differential or precise sinusoidal traveling wave signal is output on the receiving electrode. The absolute angular displacement is obtained after correlation processing. With a relatively simple time-sharing multiplexing structure, the sensor can achieve high-precision absolute angular displacement measurement. The rotor does not need lead, and has stronger industrial adaptability.

【技术实现步骤摘要】
基于交变电场的反射型绝对式时栅角位移传感器
本专利技术涉及精密角位移传感器,具体涉及一种基于交变电场的反射型绝对式时栅角位移传感器。
技术介绍
角位移传感器分为增量式和绝对式两种。相比增量式,绝对式角位移传感器具有开机无需复位,立刻获得绝对角度信息和无累计误差等优势,提高了工作效率和可靠性,因而逐渐成为角位移传感器的发展趋势。目前使用广泛的是绝对式光电编码器,它主要通过编码实现绝对定位,但是编码解码过程复杂。另外,需要利用精密刻线作为空间基准来实现精密测量,但是刻线的宽度受到光学衍射极限的限制。近年来研制出一种以时钟脉冲作为位移测量基准的时栅传感器,并在此基础上研制出了一种电场式时栅角位移传感器(公开号为CN103968750A),这种传感器以高频时钟脉冲作为测量基准,采用平行电容板构建交变电场进行精密位移测量,虽然能够实现精密测量,但是其仍然存在如下问题:(1)采用增量计数方式,存在累计误差;(2)激励信号从传感器的定子基体上的激励电极接入,感应信号从转子基体上的转子电极输出,转子基体上需要引信号输出线,有些场合不能使用,应用范围窄。
技术实现思路
本专利技术的目的是提供一种基于交变电场的反射型绝对式时栅角位移传感器,以实现绝对角位移测量,同时扩大应用范围,增强工业适应性。本专利技术所述的一种基于交变电场的反射型绝对式时栅角位移传感器,包括定子基体和与定子基体同轴安装的转子基体,转子基体下表面与定子基体上表面正对平行,并留有间隙,转子基体下表面设有差动式的感应电极Ⅰ,定子基体上表面设有与感应电极Ⅰ正对的激励电极Ⅰ,所述激励电极Ⅰ由一圈径向高度相同、圆心角相等的扇环形极片Ⅰ沿圆周方向等间隔排布组成,其中,第4n1+1号扇环形极片Ⅰ连成一组,组成A1激励相,第4n1+2号扇环形极片Ⅰ连成一组,组成B1激励相,第4n1+3号扇环形极片Ⅰ连成一组,组成C1激励相,第4n1+4号扇环形极片Ⅰ连成一组,组成D1激励相,n1依次取0至M1-1的所有整数,M1表示激励电极Ⅰ的对极数。所述定子基体上表面设有激励电极Ⅱ和差动式的接收电极,所述转子基体下表面设有差动式的感应电极Ⅱ和差动式的反射电极,感应电极Ⅱ与激励电极Ⅱ正对,反射电极与接收电极正对且与感应电极Ⅰ、感应电极Ⅱ相连。所述激励电极Ⅱ位于激励电极Ⅰ的内侧,所述接收电极位于激励电极Ⅰ的外侧。所述激励电极Ⅱ由一圈径向高度相同、圆心角相等的扇环形极片Ⅱ沿圆周方向等间隔排布组成,其中,第4n2+1号扇环形极片Ⅱ连成一组,组成A2激励相,第4n2+2号扇环形极片Ⅱ连成一组,组成B2激励相,第4n2+3号扇环形极片Ⅱ连成一组,组成C2激励相,第4n2+4号扇环形极片Ⅱ连成一组,组成D2激励相,n2依次取0至M2-1的所有整数,M2表示激励电极Ⅱ的对极数,M2=M1-1。所述感应电极Ⅰ由一圈相同的双正弦形极片Ⅰ沿圆周方向等间隔排布组成,该双正弦形极片Ⅰ所对的圆心角等于所述扇环形极片Ⅰ所对的圆心角,则相邻两双正弦形极片Ⅰ之间间隔的圆心角等于相邻两奇数号(或偶数号)扇环形极片Ⅰ之间间隔的圆心角;其中,第2n3+1号(即奇数号)双正弦形极片Ⅰ连成一组,组成A1感应组,第2n3+2号(即偶数号)双正弦形极片Ⅰ连成一组,组成B1感应组,n3依次取0至M1-1的所有整数(即感应电极Ⅰ的对极数与激励电极Ⅰ的对极数相同为M1)。所述感应电极Ⅱ由一圈相同的双正弦形极片Ⅱ沿圆周方向等间隔排布组成,该双正弦形极片Ⅱ所对的圆心角等于所述扇环形极片Ⅱ所对的圆心角,则相邻两双正弦形极片Ⅱ之间间隔的圆心角等于相邻两奇数号(或偶数号)扇环形极片Ⅱ之间间隔的圆心角;其中,第2n4+1号(即奇数号)双正弦形极片Ⅱ连成一组,组成A2感应组,第2n4+2号(即偶数号)双正弦形极片Ⅱ连成一组,组成B2感应组,n4依次取0至M2-1的所有整数(即感应电极Ⅱ的对极数与激励电极Ⅱ的对极数相同为M2)。工作时,转子基体与定子基体相对平行转动,先对激励电极Ⅱ的A2、B2、C2、D2激励相分别施加相位依次相差90°的四路同频等幅正弦激励电信号,此时激励电极Ⅰ不工作,四路同频等幅正弦激励电信号经感应电极Ⅱ与激励电极Ⅱ之间的耦合电场产生两路同频等幅相位相差180°的正弦行波信号,该两路正弦行波信号经反射电极反射回接收电极,在接收电极上输出相位相差180°的同频等幅的第一、第二行波信号,经减法电路后获得第一路差动正弦行波信号Uo1并存储;然后迅速将所述的四路同频等幅正弦激励电信号切换到激励电极Ⅰ的A1、B1、C1、D1激励相上,此时激励电极Ⅱ不工作,该四路同频等幅正弦激励电信号经感应电极Ⅰ与激励电极Ⅰ之间的耦合电场产生两路同频等幅相位相差180°的正弦行波信号,该两路正弦行波信号经反射电极反射回接收电极,在接收电极上输出相位相差180°的同频等幅的第三、第四行波信号,经减法电路后获得第二路差动正弦行波信号Uo2;第二路差动正弦行波信号Uo2经处理后得到精测角位移值,第一路差动正弦行波信号Uo1与第二路差动正弦行波信号Uo2比相后的相位差经处理后得到粗测对极定位值,将精测角位移值与粗测对极定位值相结合得到绝对角位移值。所述感应电极Ⅰ中的双正弦形极片Ⅰ沿圆周方向展开后的形状为两条幅值相等、相位相差180°的正弦曲线在[0,π]区间围成的全封闭轴对称图形Ⅰ;所述感应电极Ⅱ中的双正弦形极片Ⅱ沿圆周方向展开后的形状为两条幅值相等、相位相差180°的正弦曲线在[0,π]区间围成的全封闭轴对称图形Ⅱ。所述反射电极由同心的第一圆环形反射极片与第二圆环形反射极片间隔组成,第一圆环形反射极片与A1、A2感应组相连,第二圆环形反射极片与B1、B2感应组相连;同时接收电极由同心的第一圆环形接收极片与第二圆环形接收极片间隔组成,第一圆环形接收极片与第一圆环形反射极片正对,作为所述第一、第三行波信号的输出电极,第二圆环形接收极片与第二圆环形反射极片正对,作为所述第二、第四行波信号的输出电极。反射电极与接收电极是对感应电极Ⅰ、Ⅱ的信号进行直接反射与接收,将第二路差动正弦行波信号Uo2作为角位移精测信号,角位移精测信号与感应电极Ⅰ输出信号的特性完全相同,不会带来精度损失,从而使得精测部分角位移精度得到了提高,利用第一路差动正弦行波信号Uo1与第二路差动正弦行波信号Uo2进行粗测定位,第一路差动正弦行波信号Uo1与感应电极Ⅱ输出信号的特性完全相同,第二路差动正弦行波信号Uo2与感应电极Ⅰ输出信号的特性完全相同,信号精度损失小,更容易实现绝对定位。本专利技术所述的另一种基于交变电场的反射型绝对式时栅角位移传感器,包括定子基体和与定子基体同轴安装的转子基体,转子基体下表面与定子基体上表面正对平行,并留有间隙,转子基体下表面设有差动式的感应电极Ⅰ,定子基体上表面设有与感应电极Ⅰ正对的激励电极Ⅰ,所述激励电极Ⅰ由一圈径向高度相同、圆心角相等的扇环形极片Ⅰ沿圆周方向等间隔排布组成,其中,第4n1+1号扇环形极片Ⅰ连成一组,组成A1激励相,第4n1+2号扇环形极片Ⅰ连成一组,组成B1激励相,第4n1+3号扇环形极片Ⅰ连成一组,组成C1激励相,第4n1+4号扇环形极片Ⅰ连成一组,组成D1激励相,n1依次取0至M1-1的所有整数,M1表示激励电极Ⅰ的对极数。所述定子基体上表面设有激励电极Ⅱ本文档来自技高网...

【技术保护点】
1.一种基于交变电场的反射型绝对式时栅角位移传感器,包括定子基体(1)和与定子基体(1)同轴安装的转子基体(2),转子基体下表面与定子基体上表面正对平行,并留有间隙,转子基体下表面设有差动式的感应电极Ⅰ(21),定子基体上表面设有与感应电极Ⅰ(21)正对的激励电极Ⅰ(11),所述激励电极Ⅰ(11)由一圈径向高度相同、圆心角相等的扇环形极片Ⅰ沿圆周方向等间隔排布组成,其中,第4n1+1号扇环形极片Ⅰ连成一组,组成A1激励相,第4n1+2号扇环形极片Ⅰ连成一组,组成B1激励相,第4n1+3号扇环形极片Ⅰ连成一组,组成C1激励相,第4n1+4号扇环形极片Ⅰ连成一组,组成D1激励相,n1依次取0至M1—1的所有整数,M1表示激励电极Ⅰ的对极数;其特征是:所述定子基体上表面设有激励电极Ⅱ(12)和差动式的接收电极,所述转子基体下表面设有差动式的感应电极Ⅱ(22)和差动式的反射电极,感应电极Ⅱ与激励电极Ⅱ正对,反射电极与接收电极正对且与感应电极Ⅰ、感应电极Ⅱ相连;所述激励电极Ⅱ(12)由一圈径向高度相同、圆心角相等的扇环形极片Ⅱ沿圆周方向等间隔排布组成,其中,第4n2+1号扇环形极片Ⅱ连成一组,组成A2激励相,第4n2+2号扇环形极片Ⅱ连成一组,组成B2激励相,第4n2+3号扇环形极片Ⅱ连成一组,组成C2激励相,第4n2+4号扇环形极片Ⅱ连成一组,组成D2激励相,n2依次取0至M2—1的所有整数,M2表示激励电极Ⅱ的对极数,M2=M1—1;所述感应电极Ⅰ(21)由一圈相同的双正弦形极片Ⅰ沿圆周方向等间隔排布组成,该双正弦形极片Ⅰ所对的圆心角等于所述扇环形极片Ⅰ所对的圆心角,其中,第2n3+1号双正弦形极片Ⅰ连成一组,组成A1感应组,第2n3+2号双正弦形极片Ⅰ连成一组,组成B1感应组,n3依次取0至M1—1的所有整数;所述感应电极Ⅱ(22)由一圈相同的双正弦形极片Ⅱ沿圆周方向等间隔排布组成,该双正弦形极片Ⅱ所对的圆心角等于所述扇环形极片Ⅱ所对的圆心角,其中,第2n4+1号双正弦形极片Ⅱ连成一组,组成A2感应组,第2n4+2号双正弦形极片Ⅱ连成一组,组成B2感应组,n4依次取0至M2—1的所有整数;工作时,转子基体与定子基体相对平行转动,先对A2、B2、C2、D2激励相分别施加相位依次相差90°的四路同频等幅正弦激励电信号,此时激励电极Ⅰ不工作,接收电极上输出相位相差180°的同频等幅的第一、第二行波信号,经减法电路后获得第一路差动正弦行波信号Uo1并存储,然后迅速将所述的四路同频等幅正弦激励电信号切换到A1、B1、C1、D1激励相上,此时激励电极Ⅱ不工作,接收电极上输出相位相差180°的同频等幅的第三、第四行波信号,经减法电路后获得第二路差动正弦行波信号U02,第二路差动正弦行波信号U02经处理后得到精测角位移值,第一路差动正弦行波信号U01与第二路差动正弦行波信号U02比相后的相位差经处理后得到粗测对极定位值。...

【技术特征摘要】
1.一种基于交变电场的反射型绝对式时栅角位移传感器,包括定子基体(1)和与定子基体(1)同轴安装的转子基体(2),转子基体下表面与定子基体上表面正对平行,并留有间隙,转子基体下表面设有差动式的感应电极Ⅰ(21),定子基体上表面设有与感应电极Ⅰ(21)正对的激励电极Ⅰ(11),所述激励电极Ⅰ(11)由一圈径向高度相同、圆心角相等的扇环形极片Ⅰ沿圆周方向等间隔排布组成,其中,第4n1+1号扇环形极片Ⅰ连成一组,组成A1激励相,第4n1+2号扇环形极片Ⅰ连成一组,组成B1激励相,第4n1+3号扇环形极片Ⅰ连成一组,组成C1激励相,第4n1+4号扇环形极片Ⅰ连成一组,组成D1激励相,n1依次取0至M1—1的所有整数,M1表示激励电极Ⅰ的对极数;其特征是:所述定子基体上表面设有激励电极Ⅱ(12)和差动式的接收电极,所述转子基体下表面设有差动式的感应电极Ⅱ(22)和差动式的反射电极,感应电极Ⅱ与激励电极Ⅱ正对,反射电极与接收电极正对且与感应电极Ⅰ、感应电极Ⅱ相连;所述激励电极Ⅱ(12)由一圈径向高度相同、圆心角相等的扇环形极片Ⅱ沿圆周方向等间隔排布组成,其中,第4n2+1号扇环形极片Ⅱ连成一组,组成A2激励相,第4n2+2号扇环形极片Ⅱ连成一组,组成B2激励相,第4n2+3号扇环形极片Ⅱ连成一组,组成C2激励相,第4n2+4号扇环形极片Ⅱ连成一组,组成D2激励相,n2依次取0至M2—1的所有整数,M2表示激励电极Ⅱ的对极数,M2=M1—1;所述感应电极Ⅰ(21)由一圈相同的双正弦形极片Ⅰ沿圆周方向等间隔排布组成,该双正弦形极片Ⅰ所对的圆心角等于所述扇环形极片Ⅰ所对的圆心角,其中,第2n3+1号双正弦形极片Ⅰ连成一组,组成A1感应组,第2n3+2号双正弦形极片Ⅰ连成一组,组成B1感应组,n3依次取0至M1—1的所有整数;所述感应电极Ⅱ(22)由一圈相同的双正弦形极片Ⅱ沿圆周方向等间隔排布组成,该双正弦形极片Ⅱ所对的圆心角等于所述扇环形极片Ⅱ所对的圆心角,其中,第2n4+1号双正弦形极片Ⅱ连成一组,组成A2感应组,第2n4+2号双正弦形极片Ⅱ连成一组,组成B2感应组,n4依次取0至M2—1的所有整数;工作时,转子基体与定子基体相对平行转动,先对A2、B2、C2、D2激励相分别施加相位依次相差90°的四路同频等幅正弦激励电信号,此时激励电极Ⅰ不工作,接收电极上输出相位相差180°的同频等幅的第一、第二行波信号,经减法电路后获得第一路差动正弦行波信号Uo1并存储,然后迅速将所述的四路同频等幅正弦激励电信号切换到A1、B1、C1、D1激励相上,此时激励电极Ⅱ不工作,接收电极上输出相位相差180°的同频等幅的第三、第四行波信号,经减法电路后获得第二路差动正弦行波信号U02,第二路差动正弦行波信号U02经处理后得到精测角位移值,第一路差动正弦行波信号U01与第二路差动正弦行波信号U02比相后的相位差经处理后得到粗测对极定位值。2.根据权利要求1所述的基于交变电场的反射型绝对式时栅角位移传感器,其特征是:所述感应电极Ⅰ(21)中的双正弦形极片Ⅰ沿圆周方向展开后的形状为两条幅值相等、相位相差180°的正弦曲线在[0,π]区间围成的全封闭轴对称图形Ⅰ;所述感应电极Ⅱ(22)中的双正弦形极片Ⅱ沿圆周方向展开后的形状为两条幅值相等、相位相差180°的正弦曲线在[0,π]区间围成的全封闭轴对称图形Ⅱ。3.根据权利要求2所述的基于交变电场的反射型绝对式时栅角位移传感器,其特征是:所述反射电极由同心的第一圆环形反射极片(231)与第二圆环形反射极片(232)间隔组成,第一圆环形反射极片与A1、A2感应组相连,第二圆环形反射极片与B1、B2感应组相连;所述接收电极由同心的第一圆环形接收极片(131)与第二圆环形接收极片(132)间隔组成,第一圆环形接收极片与第一圆环形反射极片正对,作为所述第一、第三行波信号的输出电极,第二圆环形接收极片与第二圆环形反射极片正...

【专利技术属性】
技术研发人员:刘小康于治成黄沛王合文汤其富
申请(专利权)人:重庆理工大学
类型:发明
国别省市:重庆,50

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1