中波红外光学硬质保护膜的制备方法技术

技术编号:20089675 阅读:54 留言:0更新日期:2019-01-15 08:48
本发明专利技术公开了中波红外光学硬质保护膜的制备方法。该方法包括基片清洗、过渡层的制备、光学匹配层的制备、保护层的制备、真空退火处理等步骤。通过本方法制备的硬质保护膜系在中波红外3‑5μm波段的平均透过率不低于93%,经微纳米压痕测试的硬度值不低于18GPa,弹性模量不低于160GPa。并根据GJB150.A要求的环境筛选试验进行了试验,硬质保护膜系一次性通过了环境筛选试验,验证了其良好的环境适应性能。

【技术实现步骤摘要】
中波红外光学硬质保护膜的制备方法
本专利技术属于光学薄膜
,具体涉及一种中波红外光学硬质保护膜的制备方法。
技术介绍
红外观测保护窗口,应用于红外成像系统中,发挥着极其重要的保护作用。为满足红外成像的光学系统要求,应用于中波红外的观测保护窗口一般采用硅、锗、氟化镁及蓝宝石等窗口。但由于材料本身的特性,为保证红外观测保护窗口的正常使用,需在其表面制备保护增透薄膜。经过几十年的发展,目前已有诸多材料用作中波红外光学窗口表面的光学保护膜,常见的有类金刚石薄膜(DLC)、碳化锗薄膜(GeC)等,其制备方式也已十分成熟。但上述保护膜主要满足常规环境下的使用,在如砂尘等恶劣环境下使用时便会出现一定的不足,主要问题在于DLC、GeC薄膜的机械性能较弱,抗砂尘冲击能力不足,难以长期保持在砂尘环境下坚持长久。为此,需针对性的研究制备一种新型的中波红外光学保护膜,具备较强的机械性能,以满足中波红外保护观测窗在砂尘环境下的长期正常使用需求。
技术实现思路
本专利技术目的在于提供一种中波红外光学硬质保护膜的制备方法,其不仅具备良好的透过率,还有超高的硬度值以及良好的环境适应性。为达到上述目的,采用技术方案如下:中波红外光学硬质保护膜的制备方法,包括以下步骤:1)基片清洗;对基片先采用洗涤剂粗洗,然后利用反渗透水进行抛动,去除表面的抛光残留,随后利用高纯去离子水进行精洗并抛动,最后利用离心干燥机去除表面残留的水渍;2)过渡层的制备;对基片表面利用化学试剂进行浸泡处理,处理完成后去除表面的化学试剂残留;放置于恒温恒湿的环境中,控制相对湿度不超过40%,使其表面缓慢均匀氧化,形成过渡层;3)光学匹配层的制备;采用离子束辅助蒸发沉积的方式,在形成过渡层的基片表面镀制光学匹配层,采用蒸发二氧化硅膜料并充氧反应的方式进行制备,形成稳定的SixOy氧化层;4)保护层的制备;将制备的光学匹配层表面清擦,去除表面浮尘残留使其表面光洁;转入非平衡磁控溅射镀膜机内,利用高能氩离子轰击高纯碳化硅靶材沉积形成SiC薄膜;5)真空退火处理;SiC薄膜制备完成后温度保持在300±5℃,时间不少于1小时。按上述方案,所述基片是光学硅材料、玻璃或蓝宝石。按上述方案,所述过渡层厚度为10-20nm。按上述方案,所述光学匹配层的厚度为100nm-300nm。按上述方案,所述保护层的厚度为200-400nm。本专利技术提出了一种应用于中波红外波段的新型保护膜及其制备方法。该保护膜以溅射制备的碳化硅(SiC)薄膜为保护层,制备出较强机械性能的硬质光学保护膜。同时,为解决SiC折射率高难以与基片折射率匹配的问题,设计并制备了过渡层及光学匹配层SixOy,提升保护膜硬度、弹性模量等机械性能的同时保证了其较高的光学性能水平。制备出的保护膜具备较强的抗砂尘冲击能力,且批量化能力强,具有十分显著的应用价值。本专利技术的优点在于:1)采用硬质保护材料SiC作为中波红外光学窗口表面保护增透膜。SiC材料具有良好的光学、物理及机械性能,已广泛应用于半导体和光学领域。将其用作中波红外光学保护观测窗口的保护增透膜在国内应用极少,本专利技术独创性的将SiC用作光学窗口的保护增透膜,形成了抗砂尘的硬质保护膜。2)SiC材料的折射率较高,与中波红外常用基片折射率匹配度较低,致使其光学性能难以符合要求。为解决该问题,在基片与SiC表面制备了一层光学匹配层,形成了高低折射率的复合保护膜系,在保证保护膜系机械性能的同时提升了其光学性能。此外,为增加复合保护膜系的稳定性,在光学匹配层与基片制备了与匹配层结构类似的过渡层,显著增加了保护膜系与基片的结合力。3)本专利技术分别采用磁控溅射的方法制备了SiC保护膜及离子束辅助蒸发沉积的方法制备了光学匹配层SixOy。该制备方法均依赖于常规镀膜设备,涉及的工艺方法易移植,具备批量工程化制备的能力。4)本方法在基片表面制备的硬质保护膜系中波红外3-5μm波段范围平均透过率不低于93%。经纳米压痕的方法测试得起硬度值不低于18GPa,弹性模量不低于160GPa。并根据GJB150.A要求的环境筛选试验进行了试验,硬质保护膜系一次性通过了筛选试验,验证了其良好的环境适应性。附图说明图1:本专利技术中波红外光学硬质保护膜结构示意图;图2:实施例1制备硬质保护膜实测光学透过率曲线;图3:实施例1制备硬质保护膜经纳米压痕测试图;图4:类金刚石膜的光学透过率曲线;图5:类金刚石膜经纳米压痕测试图。具体实施方式以下实施例进一步阐释本专利技术的技术方案,但不作为对本专利技术保护范围的限制。实施例11)清洗:基片材料为单晶硅,尺寸为φ170×8mm。首先将硅基片放置于专用洗剂之中,利用超声波进行粗细,然后利用反渗透水抛动,随后利用高纯去离子水进行超声清洗和抛动。最后利用离心干燥机去除表面的残留水渍。2)过渡层的制备:将硅基片浸泡于HF中20min,随后将其放置于恒温恒湿的环境中,控制其湿度为15%,形成匀质过渡层。3)光学匹配层的制备:将硅基片进行清擦之后放置于镀膜机内。设置物理厚度为130nm。选择高纯二氧化硅作为膜料,采用离子束辅助沉积的方式在基片上采用电子束蒸发镀制SixOy,同样充入20sccm的氧气。设置沉积速率为0.6nm/s,温度为180℃。厚度为130nm。4)SiC薄膜的镀制:镀制好SixOy之后,将其清擦放置于磁控溅射镀膜机内。选择硅靶作为反应靶材,氩气作为溅射气体,流量控制为30sccm。在制备过程中,调节靶材偏压为300V,基片表面偏压为100V,恒温300℃进行制备。物理厚度为240nm。5)退火处理:镀制完成后,放置于真空室内保温1小时,随后缓慢降温,温度降至50℃之后取出样件。5)制备完成后对其进行光学性能及机械性能的测试。单晶硅基片上制备得到的中波红外光学硬质保护膜结构示意图如图1所示。本实施例大尺寸硅晶体单面制备硬质保护膜实测光学透过率曲线如图2所示。同时,在同样尺寸硅晶体单面制备传统光学DLC保护膜的光学透过率曲线如图4所示。通过比较,其两者的透过率相当。微纳米压痕为目前国内外最为先进的测试光学薄膜机械性能的方法,控制一定载荷或压入深度进行压痕试验,通过连续加载卸载的方法进行测试,测试过程中,实时通过在线反馈膜层的压入深度来计算其硬度和弹性模量。本实施例硬质保护膜经纳米压痕测试如图3所示,采用固定压入深度的测试方法进行测试,通过实时控制载荷确保一定的压入深度;取光学薄膜物理厚度的1/10内的压入深度为薄膜的硬度和弹性模量。采用传统光学类金刚石膜经纳米压痕测试得出的硬度及弹性模量如图5所示。通过对比可得,该硬度和弹性模量值低于图3。本文档来自技高网...

【技术保护点】
1.中波红外光学硬质保护膜的制备方法,其特征在于包括以下步骤:1)基片清洗;对基片先采用洗涤剂粗洗,然后利用反渗透水进行抛动,去除表面的抛光残留,随后利用高纯去离子水进行精洗并抛动,最后利用离心干燥机去除表面残留的水渍;2)过渡层的制备;对基片表面利用化学试剂进行浸泡处理,处理完成后去除表面的化学试剂残留;放置于恒温恒湿的环境中,控制相对湿度不超过40%,使其表面缓慢均匀氧化,形成过渡层;3)光学匹配层的制备;采用离子束辅助蒸发沉积的方式,在形成过渡层的基片表面镀制光学匹配层,采用蒸发二氧化硅膜料并充氧反应的方式进行制备,形成稳定的SixOy氧化层;4)保护层的制备;将制备的光学匹配层表面清擦,去除表面浮尘残留使其表面光洁;转入非平衡磁控溅射镀膜机内,利用高能氩离子轰击高纯碳化硅靶材沉积形成SiC薄膜;5)真空退火处理;SiC薄膜制备完成后温度保持在300±5℃,时间不少于1小时。

【技术特征摘要】
1.中波红外光学硬质保护膜的制备方法,其特征在于包括以下步骤:1)基片清洗;对基片先采用洗涤剂粗洗,然后利用反渗透水进行抛动,去除表面的抛光残留,随后利用高纯去离子水进行精洗并抛动,最后利用离心干燥机去除表面残留的水渍;2)过渡层的制备;对基片表面利用化学试剂进行浸泡处理,处理完成后去除表面的化学试剂残留;放置于恒温恒湿的环境中,控制相对湿度不超过40%,使其表面缓慢均匀氧化,形成过渡层;3)光学匹配层的制备;采用离子束辅助蒸发沉积的方式,在形成过渡层的基片表面镀制光学匹配层,采用蒸发二氧化硅膜料并充氧反应的方式进行制备,形成稳定的SixOy氧化层;4)保护层的制备;将制备的光学匹配层表面清擦...

【专利技术属性】
技术研发人员:张天行姚细林薛俊何光宗梁雅娟
申请(专利权)人:湖北久之洋红外系统股份有限公司
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1