一种锂硫电池的氮化硅改性金属锂负极材料及制备方法技术

技术编号:20048369 阅读:136 留言:0更新日期:2019-01-09 05:18
本发明专利技术提出一种锂硫电池的氮化硅改性金属锂负极材料及制备方法,通过正硅酸乙酯水解后进行高温氮化获得氮化硅纳米线,并通过碳热还原将金属锂负载于氮化硅纳米线内部,制备而成的金属锂负极材料以氮化硅纳米线堆叠在锂金属相表面形成三维网状包覆层。本发明专利技术通过在负极金属锂表面使用氮化硅纳米线堆叠而成的三维多孔网状结构进行包覆,充电时沉积的金属锂生长在孔道内部而非负极表面,三维多孔网状结构孔隙的无序性可以有效抑制锂枝晶在孔隙内部的长大,降低锂金属的不可逆损失和对隔膜的危害性,进而克服了现有锂硫电池负极表面容易产生锂枝晶的问题,提高了电池材料循环使用寿命。

【技术实现步骤摘要】
一种锂硫电池的氮化硅改性金属锂负极材料及制备方法
本专利技术涉及硫锂电池材料领域,具体涉及一种锂硫电池的氮化硅改性金属锂负极材料及制备方法。
技术介绍
随着新能源和绿色科学技术的不断进步以及对动力电池和移动电源设备需求的增长,对环境友好型、循环寿命长、比容量高的锂离子电池的研究变得越来越有意义。锂硫电池是一种新型锂离子二次电池,具有非常高的理论容量,是铅酸电池等普通电池的3-4倍,同时锂硫电池的正极材料为自然界常态的单质硫,其具有成本相对较低,储量丰富、无毒等优点,减少了电池废弃对环境的污染程度,是下一代新能源电池的主流导向。锂硫电池通常由硫复合正极、锂金属负极、有机电解液和隔膜组成。锂硫电池的储能过程主要基于活性物质硫和锂金属的电化学反应,放电过程中,负极锂金属被氧化,形成锂离子和电子,分别经由内部电解液和外部电路到达硫正极。正极的单质硫得电子被还原,与锂离子反应生成硫化锂。充电过程则发生相反的反应。在醚类电解液中,锂硫电池的放电曲线一般有两个典型的放电平台。其中,较高电压处的电压平台对应于硫单质被初步锂化形成中间产物,即可溶性长链聚硫化物Li2S8、Li2S6、Li2S4,溶于电解液中,电压较低的电压平台则对应于长链聚硫化物被进一步锂化形成不溶的短链聚硫化物Li2S2、Li2S,贡献的容量约占硫理论容量的75%。尽管锂硫电池具有很多优势,目前其商业化应用仍受诸多因素限制。主要在于锂硫电池在充放电过程中发生了固体-液体-固体的转化,其中,反应转化过程中的中间相如Li2S6、Li2S8等高价的硫离子在电解液中溶解度较大,而且在正、负极间电化学势和浓度差驱动下,通过电解液与锂硫电池的负极锂片直接接触,负极锂金属具有较高的反应活性,会与电解质发生反应,在表面形成不均匀的固体电解质中间相(SEI膜),此膜虽具有离子导电性,但对电子绝缘,增加了电池的内阻。并且,SEI膜分布不均,不能很好地钝化锂负极表面,锂金属不断与电解质发生副反应,持续消耗锂金属和电解质,导致电池的可逆性差,库伦效率低。此外,锂的不均匀沉积导致锂枝晶的生长,不断破坏和重建SEI膜,进一步消耗锂金属和电解质。脱落的锂枝晶将与锂负极失去接触成为"死锂",降低电池的可逆性。并且锂枝晶可能会刺穿隔膜,导致内部短路,构成严重的安全隐患。对锂金属表面进行保护很有必要,目前对于负极材料的改进主要通过有机柔性保护膜在负极表面形成稳定的隔离层,用以抑制聚硫离子带来的穿梭效应和负极表面钝化。目前常见的金属锂表面改性方法包括:(1)在金属锂表面原位反应生成稳定的类SEI膜;(2)通过非原位手段在金属锂表面预先镀覆一层保护膜。专利CN105702914A提出了一种锂硫电池负极的保护方法,通过将锂片负极在不饱和有机物中进行浸泡处理,控制表面的SEI膜的形成,但对于负极锂枝晶的生长难以有效控制,降低了电池的循环使用寿命。因此,通过对负极材料表面进行改性处理以降低锂枝晶的形成具有十分重要的实际意义。
技术实现思路
针对现有锂硫电池负极表面容易产生锂枝晶的问题,本专利技术提出一种锂硫电池的氮化硅改性金属锂负极材料及制备方法,通过正硅酸乙酯水解后进行高温氮化获得氮化硅纳米线,将金属锂负载与氮化硅纳米线内部,从而金属锂生长在孔道内部,降低锂金属的不可逆损失和对隔膜的危害性。为解决上述问题,本专利技术采用以下技术方案:提供一种锂硫电池的氮化硅改性金属锂负极材料,所述金属锂负极材料以氮化硅纳米线堆叠在锂金属相表面形成三维网状包覆层,所述包覆层厚度为30-200μm,氮化硅与锂金属相以锂氮共价键连接,所述三维网状包覆层结构孔隙无序分布,孔径范围在1.4-3.2μm之间,所述孔隙为贯通型孔洞。优选的,所述氮化硅纳米线的线径为20-80nm,长度为8-40μm。优选的,所述锂金属相为氧化锂还原相,晶粒呈长度为30-100μm长条形。提供一种锂硫电池的氮化硅改性金属锂负极材料的制备方法,具体制备方法为:(1)称取8-13质量份正硅酸乙酯加入适量去离子水中,再向其中滴加酸液调节PH<2,静置48-60h后纺丝,获得氧化硅纳米线;(2)将所述氧化硅纳米线与碳酸锂及过量导电炭黑混合球磨后,在氮气/氩气混合气氛下进行真空热处理,设置真空度为0.1-0.5kpa,处理温度为900-950℃,氧化硅被导电炭黑还原后与氮气反应形成氮化硅纳米线;(3)热处理3-4h后,停止通入氮气,将体系温度升高至1500-1700℃,碳酸锂热分解为氧化锂,熔融态的碳酸锂和氧化锂体积剧烈收缩,将氮化硅纳米线吸附在熔融相表面,氧化锂被导电炭黑还原为金属锂,氮化硅纳米线堆叠在金属锂表层,形成三维网状包覆层,反应2-6h后,缓慢将温度降低至室温,采用无水乙醇清洗为超声清洗,清洗后经过过滤,得到粉末,再采用真空干燥,最后将粉末压制为片状固体,得到电池负极材料。优选的,步骤(1)中所述酸液为体积浓度为10%-12.5%的稀盐酸。优选的,步骤(1)中所述氧化硅纳米线的线径为20-100nm,长度为10-50μm。优选的,步骤(2)中所述氧化硅纳米线、碳酸锂及导电炭黑的质量比例为1:0.5-3:50-80。优选的,步骤(2)中,所述球磨速度为400-1000rpm,球磨介质选用刚玉介质,球磨过程中采用氮气保护,球磨过程中控制温度为80-120℃。优选的,步骤(2)中,所述氮气/氩气混合气氛中氮气浓度为70%-90%。优选的,步骤(3)中,降温速度为5-10℃/min,所述粉末压制的压力控制在1.5-2.4MPa。氮化硅具有化学稳定性高、高强比、高比模、耐高温等特点,并具有极强的抗腐蚀能力和良好的抗氧化能力。纳米线具有径向尺寸为纳米尺度的结构,由于电子波动及原子之间的相互作用受到尺度的影响,表现出与块体材料所不具备的特殊物理化学性质。纳米线堆叠的三维网状结构的纳米材料具有高比表面积,在金属锂负极表面包覆层可以减少副反应的发生和抑制锂枝晶的生长。鉴于此,对于现有锂硫电池负极表面容易产生锂枝晶的问题,本专利技术提出一种锂硫电池的氮化硅改性金属锂负极材料及制备方法。通过正硅酸乙酯水解后进行高温氮化获得氮化硅纳米线,同时通过碳热还原将金属锂负载于氮化硅纳米线内部。本专利技术通过在负极金属锂表面使用氮化硅纳米线堆叠而成的三维多孔网状结构进行包覆,充电时沉积的金属锂生长在孔道内部而非负极表面,其孔隙的无序性可以有效抑制锂枝晶在孔隙内部的长大,从而降低锂金属的不可逆损失和对隔膜的危害性。本专利技术提供一种锂硫电池的氮化硅改性金属锂负极材料及制备方法,与现有技术相比,其突出的特点和优异的效果在于:1、本专利技术提出一种锂硫电池的氮化硅改性金属锂负极材料及制备方法,在负极金属锂表面使用氮化硅纳米线堆叠而成的三维多孔网状结构进行包覆,充电时沉积的金属锂生长在孔道内部而非负极表面,结构中孔隙的无序性可以有效抑制锂枝晶在孔隙内部的长大,从而降低锂金属的不可逆损失和对隔膜的危害性,循环多次后无枝晶体积变化。2、本专利技术制备的三维多孔网状结构氮化硅纳米线具有化学稳定性,不与多硫化物和金属锂发生反应,不溶于电解质中,稳定性高。3、本专利技术方法简单,工艺可控,制备出的负极材料性能稳定,易于进行产业化发展。具体实施方式以下通过具体实施方式对本专利技术作进一步的详细说明,但不应将此理解为本专利技术的本文档来自技高网
...

【技术保护点】
1.一种锂硫电池的氮化硅改性金属锂负极材料,其特征在于,所述金属锂负极材料以氮化硅纳米线堆叠在锂金属相表面形成三维网状包覆层,所述包覆层厚度为30‑200μm,氮化硅与锂金属相以锂氮共价键连接,所述三维网状包覆层结构孔隙无序分布,孔径范围在1.4‑3.2μm之间,所述孔隙为贯通型孔洞。

【技术特征摘要】
1.一种锂硫电池的氮化硅改性金属锂负极材料,其特征在于,所述金属锂负极材料以氮化硅纳米线堆叠在锂金属相表面形成三维网状包覆层,所述包覆层厚度为30-200μm,氮化硅与锂金属相以锂氮共价键连接,所述三维网状包覆层结构孔隙无序分布,孔径范围在1.4-3.2μm之间,所述孔隙为贯通型孔洞。2.如权利要求1所述的一种锂硫电池的氮化硅改性金属锂负极材料,其特征在于,所述氮化硅纳米线的线径为20-80nm,长度为8-40μm。3.如权利要求1所述的一种锂硫电池的氮化硅改性金属锂负极材料,其特征在于,所述锂金属相为氧化锂还原相,晶粒呈长度为30-100μm长条形。4.权利要求1-3任一权项所述的一种锂硫电池的氮化硅改性金属锂负极材料的制备方法,其特征在于,具体制备方法为:(1)称取8-13质量份正硅酸乙酯加入适量去离子水中,再向其中滴加酸液调节PH<2,静置48-60h后纺丝,获得氧化硅纳米线;(2)将所述氧化硅纳米线与碳酸锂及过量导电炭黑混合球磨后,在氮气/氩气混合气氛下进行真空热处理,设置真空度为0.1-0.5kpa,处理温度为900-950℃,氧化硅被导电炭黑还原后与氮气反应形成氮化硅纳米线;(3)热处理3-4h后,停止通入氮气,将体系温度升高至1500-1700℃,碳酸锂热分解为氧化锂,熔融态的碳酸锂和氧化锂体积剧烈收缩,将氮化硅纳米线吸附在熔融相表面,氧化锂被导电炭黑还原为金属锂,氮化硅纳米线堆叠...

【专利技术属性】
技术研发人员:陈庆廖健淞
申请(专利权)人:成都新柯力化工科技有限公司
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1