一种复杂流场下散热系统风侧仿真方法技术方案

技术编号:19858415 阅读:26 留言:0更新日期:2018-12-22 11:54
本发明专利技术涉及一种复杂流场下散热系统风侧仿真方法,属于计算流体动力学技术领域。本发明专利技术首先通过对关键模型(风扇)单独进行性能校核,将满足要求的风扇模型直接移植到散热系统中,进行系统分析计算,保证了模型参数的一致性,有效解决了单一模型的数据传递问题,减少分析误差,同时大幅度提高了仿真分析效率,同时实现了对整个散热系统风侧特性进行综合评价。

【技术实现步骤摘要】
一种复杂流场下散热系统风侧仿真方法
本专利技术属于计算流体动力学
,具体涉及一种复杂流场下散热系统风侧仿真方法。
技术介绍
随着计算机技术的发展,CFD技术大量应用于车辆散热系统冷却空气流场分析之中。但在目前的车辆散热系统CFD仿真中,往往存在如下两种问题:1.忽略关键模型(风扇)性能校核,直接进行散热系统CFD分析。导致的后果是仅能对风道的阻力和系统流量进行初步分析,不能对整个散热系统仿真分析结果的符合性进行评价,致使整个仿真结果与测试结果有较大出入,难以指导设计;2.虽单独对关键模型(风扇)进行性能校核,但校核后的模型数据不能直接向散热系统仿真模型进行传递。在散热系统流场仿真分析中,需要重新对风扇模型进行处理,费时费力,并且很难保证与性能校核的风扇模型前处理完全相同,导致系统中的风扇模型计算结果无规律偏离。
技术实现思路
(一)要解决的技术问题本专利技术要解决的技术问题是:如何设计一种复杂流场下散热系统风侧仿真方法,解决单一模型的数据传递问题,减少人工干预,提高仿真分析效率。(二)技术方案为了解决上述技术问题,本专利技术提供了一种复杂流场下散热系统风侧仿真方法,包括以下步骤:第一步,在三维通用软件中,由散热系统的三维模型,通过建模以及布尔运算的方法构建包括风扇、散热器以及风道这些部件在内的散热系统的风侧流动区域模型;第二步,基于所述风扇流动区域模型,增加风扇流动区域模型的进气区域模型和排气区域模型,构建风扇流动区域校核模型;第三步,将所述风扇流动区域校核模型转换成三维软件通用格式,生成通用格式文件,在转换时,坐标系使用与散热系统的风侧流动区域模型统一的公用坐标系;第四步,启动Gambit软件,通过File/Import命令,选取第三步相对应的通用格式,导入第三步生成的所述通用格式文件;第五步,在Gambit软件中,完成风扇流动区域校核模型的前处理定义,包括网格划分和边界类型定义;(1)完成所述风扇流动区域校核模型的网格划分;(2)定义所述风扇流动区域校核模型的进口边界面为interface类型;(3)定义所述风扇流动区域校核模型的出口边界面为interface类型;(4)定义所述风扇流动区域校核模型的进气区域模型的出口面为interface类型;(5)定义所述风扇流动区域校核模型的排气区域模型的进口面为interface类型;第六步,保存第五步处理完毕的风扇流动区域校核模型为.dbs文件,供后续调用;第七步,输出第五步处理完毕的风扇流动区域校核模型为.msh文件;第八步,将所述.msh文件导入Fluent软件之中,以便后续进行分析前设置;第九步,完成分析前设置:(1)通过Define/GridInterfaces命令,将风扇流动区域校核模型的进口边界面与风扇流动区域校核模型的进气区域模型的出口面定义为GridInterfaces;(2)通过Define/GridInterfaces命令,将风扇流动区域校核模型的出口边界面与风扇流动区域校核模型的排气区域模型的进口面定义为GridInterfaces;(3)采用Fluent软件的MRF功能(MovingReferenceFrame)处理风扇旋转机械流动问题;第十步,利用Fluent软件完成Fluent分析计算以及后处理;第十一步,检查仿真结果与风扇试验结果的相符性,若最大误差小于预设阈值则认为仿真结果可信;若超过所述预设阈值则根据具体原因,对模型进行修正,重新进行分析,直到仿真结果与风扇试验结果处在允许的误差范围之内为止;第十二步,在第一步选取的三维通用软件中对散热系统的风侧流动区域模型进行装配,形成散热系统风侧流动区域装配模型,在装配时,排除风扇流动区域模型;第十三步,将所述散热系统风侧流动区域装配模型转换成与第三步对应的三维软件通用格式,生成通用格式文件,在转换时,坐标系选用与风扇流动区域校核模型统一的公用坐标系;第十四步,模型导入及调用:(1)启动Gambit软件;(2)通过File/open命令,打开调用第六步所生成的合格的.dbs格式的风扇流动区域校核模型;(3)通过File/Import命令,导入第十三步生成的通用格式文件;第十五步,完成模型前处理:(1)在导入散热系统风侧流动区域装配模型后的风扇流动区域校核模型中,完成散热系统风侧流动区域装配模型网格划分;(2)定义散热系统风侧流动区域装配模型与风扇流动区域校核模型进口边界面相连接的界面为interface类型;(3)定义散热系统风侧流动区域装配模型与风扇流动区域校核模型出口边界面相连接的界面为interface类型;(4)完成散热系统风侧流动区域装配模型其余界面的定义;(5)删除风扇流动区域校核模型的进气区域模型及附着其上的相关边界条件;(6)删除风扇流动区域校核模型的排气区域模型以及附着其上的相关边界条件;第十六步,保存第十五步前处理完毕的模型为.dbs文件;第十七步,输出第十五步前处理完毕的模型为.msh文件;第十八步,将所述.msh文件导入Fluent软件之中,进行分析前设置;第十九步,完成分析前设置:(1)通过Define/GridInterfaces命令,将风扇流动区域校核模型进口边界面、散热系统风侧流动区域装配模型与风扇流动区域校核模型进口边界面相连接的界面均定义为GridInterfaces;(2)通过Define/GridInterfaces命令,将风扇流动区域校核模型出口边界面、散热系统风侧流动区域装配模型与风扇流动区域模型出口边界面相连接的界面均定义为GridInterfaces;(3)通过采用Fluent软件的MRF功能处理风扇旋转机械流动问题;第二十步,完成Fluent分析计算以及后处理;第二十一步,验证仿真结果是否满足设计要求,如果不满足要求,则对散热系统风侧流动区域装配模型进行修正优化,重新进行分析,直到仿真结果满足设计要求为止。优选地,所述三维通用软件为Creo。优选地,三维通用软件为UG。优选地,所述三维软件通用格式为igs。优选地,所述三维软件通用格式为stp。优选地,所述预设阈值为10%。优选地,在第二十一步之后还包括第二十二步,生成CFD报告。(三)有益效果本专利技术首先通过对关键模型(风扇)单独进行性能校核,将满足要求的风扇模型直接移植到散热系统中,进行系统分析计算,保证了模型参数的一致性,有效解决了单一模型的数据传递问题,减少分析误差,同时大幅度提高了仿真分析效率,同时实现了对整个散热系统风侧特性进行综合评价。附图说明图1是本专利技术的方法流程图。具体实施方式为使本专利技术的目的、内容、和优点更加清楚,下面结合附图和实施例,对本专利技术的具体实施方式作进一步详细描述。如图1所示,本专利技术提供的一种复杂流场下散热系统风侧仿真方法,包括以下步骤:第一步,在三维通用软件中(如Creo、UG),由散热系统的三维模型,通过建模以及布尔运算的方法构建包括风扇、散热器以及风道这些部件在内的散热系统的风侧流动区域模型;第二步,基于所述风扇流动区域模型,增加风扇流动区域模型的进气区域模型和排气区域模型,构建风扇流动区域校核模型;第三步,将所述风扇流动区域校核模型转换成三维软件通用格式(如igs、stp),生成通用格式文件,在转换时,坐标系使用与散热系统的风侧流动区域模型统一的本文档来自技高网...

【技术保护点】
1.一种复杂流场下散热系统风侧仿真方法,其特征在于,包括以下步骤:第一步,在三维通用软件中,由散热系统的三维模型,通过建模以及布尔运算的方法构建包括风扇、散热器以及风道这些部件在内的散热系统的风侧流动区域模型;第二步,基于所述风扇流动区域模型,增加风扇流动区域模型的进气区域模型和排气区域模型,构建风扇流动区域校核模型;第三步,将所述风扇流动区域校核模型转换成三维软件通用格式,生成通用格式文件,在转换时,坐标系使用与散热系统的风侧流动区域模型统一的公用坐标系;第四步,启动Gambit软件,通过File/Import命令,选取第三步相对应的通用格式,导入第三步生成的所述通用格式文件;第五步,在Gambit软件中,完成风扇流动区域校核模型的前处理定义,包括网格划分和边界类型定义;(1)完成所述风扇流动区域校核模型的网格划分;(2)定义所述风扇流动区域校核模型的进口边界面为interface类型;(3)定义所述风扇流动区域校核模型的出口边界面为interface类型;(4)定义所述风扇流动区域校核模型的进气区域模型的出口面为interface类型;(5)定义所述风扇流动区域校核模型的排气区域模型的进口面为interface类型;第六步,保存第五步处理完毕的风扇流动区域校核模型为.dbs文件,供后续调用;第七步,输出第五步处理完毕的风扇流动区域校核模型为.msh文件;第八步,将所述.msh文件导入Fluent软件之中,以便后续进行分析前设置;第九步,完成分析前设置:(1)通过Define/Grid Interfaces命令,将风扇流动区域校核模型的进口边界面与风扇流动区域校核模型的进气区域模型的出口面定义为Grid Interfaces;(2)通过Define/Grid Interfaces命令,将风扇流动区域校核模型的出口边界面与风扇流动区域校核模型的排气区域模型的进口面定义为Grid Interfaces;(3)采用Fluent软件的MRF功能(Moving Reference Frame)处理风扇旋转机械流动问题;第十步,利用Fluent软件完成Fluent分析计算以及后处理;第十一步,检查仿真结果与风扇试验结果的相符性,若最大误差小于预设阈值则认为仿真结果可信;若超过所述预设阈值则根据具体原因,对模型进行修正,重新进行分析,直到仿真结果与风扇试验结果处在允许的误差范围之内为止;第十二步,在第一步选取的三维通用软件中对散热系统的风侧流动区域模型进行装配,形成散热系统风侧流动区域装配模型,在装配时,排除风扇流动区域模型;第十三步,将所述散热系统风侧流动区域装配模型转换成与第三步对应的三维软件通用格式,生成通用格式文件,在转换时,坐标系选用与风扇流动区域校核模型统一的公用坐标系;第十四步,模型导入及调用:(1)启动Gambit软件;(2)通过File/open命令,打开调用第六步所生成的合格的.dbs格式的风扇流动区域校核模型;(3)通过File/Import命令,导入第十三步生成的通用格式文件;第十五步,完成模型前处理:(1)在导入散热系统风侧流动区域装配模型后的风扇流动区域校核模型中,完成散热系统风侧流动区域装配模型网格划分;(2)定义散热系统风侧流动区域装配模型与风扇流动区域校核模型进口边界面相连接的界面为interface类型;(3)定义散热系统风侧流动区域装配模型与风扇流动区域校核模型出口边界面相连接的界面为interface类型;(4)完成散热系统风侧流动区域装配模型其余界面的定义;(5)删除风扇流动区域校核模型的进气区域模型及附着其上的相关边界条件;(6)删除风扇流动区域校核模型的排气区域模型以及附着其上的相关边界条件;第十六步,保存第十五步前处理完毕的模型为.dbs文件;第十七步,输出第十五步前处理完毕的模型为.msh文件;第十八步,将所述.msh文件导入Fluent软件之中,进行分析前设置;第十九步,完成分析前设置:(1)通过Define/Grid Interfaces命令,将风扇流动区域校核模型进口边界面、散热系统风侧流动区域装配模型与风扇流动区域校核模型进口边界面相连接的界面均定义为Grid Interfaces;(2)通过Define/Grid Interfaces命令,将风扇流动区域校核模型出口边界面、散热系统风侧流动区域装配模型与风扇流动区域模型出口边界面相连接的界面均定义为Grid Interfaces;(3)通过采用Fluent软件的MRF功能处理风扇旋转机械流动问题;第二十步,完成Fluent分析计算以及后处理;第二十一步,验证仿真结果是否满足设计要求,如果不满足要求,则对散热系统风侧流动区域装配模型进行修正优化,重新进行分析,直到仿真结果满足设计要求为止。...

【技术特征摘要】
1.一种复杂流场下散热系统风侧仿真方法,其特征在于,包括以下步骤:第一步,在三维通用软件中,由散热系统的三维模型,通过建模以及布尔运算的方法构建包括风扇、散热器以及风道这些部件在内的散热系统的风侧流动区域模型;第二步,基于所述风扇流动区域模型,增加风扇流动区域模型的进气区域模型和排气区域模型,构建风扇流动区域校核模型;第三步,将所述风扇流动区域校核模型转换成三维软件通用格式,生成通用格式文件,在转换时,坐标系使用与散热系统的风侧流动区域模型统一的公用坐标系;第四步,启动Gambit软件,通过File/Import命令,选取第三步相对应的通用格式,导入第三步生成的所述通用格式文件;第五步,在Gambit软件中,完成风扇流动区域校核模型的前处理定义,包括网格划分和边界类型定义;(1)完成所述风扇流动区域校核模型的网格划分;(2)定义所述风扇流动区域校核模型的进口边界面为interface类型;(3)定义所述风扇流动区域校核模型的出口边界面为interface类型;(4)定义所述风扇流动区域校核模型的进气区域模型的出口面为interface类型;(5)定义所述风扇流动区域校核模型的排气区域模型的进口面为interface类型;第六步,保存第五步处理完毕的风扇流动区域校核模型为.dbs文件,供后续调用;第七步,输出第五步处理完毕的风扇流动区域校核模型为.msh文件;第八步,将所述.msh文件导入Fluent软件之中,以便后续进行分析前设置;第九步,完成分析前设置:(1)通过Define/GridInterfaces命令,将风扇流动区域校核模型的进口边界面与风扇流动区域校核模型的进气区域模型的出口面定义为GridInterfaces;(2)通过Define/GridInterfaces命令,将风扇流动区域校核模型的出口边界面与风扇流动区域校核模型的排气区域模型的进口面定义为GridInterfaces;(3)采用Fluent软件的MRF功能(MovingReferenceFrame)处理风扇旋转机械流动问题;第十步,利用Fluent软件完成Fluent分析计算以及后处理;第十一步,检查仿真结果与风扇试验结果的相符性,若最大误差小于预设阈值则认为仿真结果可信;若超过所述预设阈值则根据具体原因,对模型进行修正,重新进行分析,直到仿真结果与风扇试验结果处在允许的误差范围之内为止;第十二步,在第一步选取的三维通用软件中对散热系统的风侧流动区域模型进行装配,形成散热系统风侧流动区域装配模型,在装配时,排除风扇流动区域模型;第十三步,将所述散热系统风侧流动区域装配模型...

【专利技术属性】
技术研发人员:杨德友严明舒成龙高佳瑜杨乃锋李玉刚方文华牛丹华隗立国王璐
申请(专利权)人:中国北方车辆研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1