微波功率稳定装置制造方法及图纸

技术编号:19797156 阅读:17 留言:0更新日期:2018-12-19 04:43
本实用新型专利技术公开了一种微波功率稳定装置,包括依次连接的PID伺服器、微波混频器、微波功率放大器、定向耦合器、微波天线,微波混频器连接有微波源;定向耦合器依次通过包络检波器、低通滤波器与PID伺服器的差分放大器的输入端连接,差分放大器的输入端还连接有参考电压源。由于采用了混频器来实现微波功率的受控调节,所以反馈速度会比其他的利用压控衰减器的来实现微波功率调节快;由于使用了PID伺服器,所以环路反馈也更加的迅速,系统静差变小,系统也变得更稳定。

【技术实现步骤摘要】
微波功率稳定装置
本技术涉及一种连续输出微波功率稳定技术,尤其涉及一种微波功率稳定装置。
技术介绍
一方面,经过几十年时间发展,摩尔定律已经慢慢不再适用,半导体计算机技术发展到了瓶颈,另一方面,贝尔实验室的彼得·肖尔(PeterShor)于1995年提出了量子计算的第一个解决具体问题的思路,即肖尔因子分解算法,这两个方面使得人们急切的需要制造出量子计算机。而最有可能实现量子计算的系统包括囚禁离子系统、超导比特系统以及金刚石色心等。但是,无论是那种系统,最通用的操控量子位的方法,就是微波操控。微波输出功率则决定了量子位的操控的快慢,如果微波功率不稳定,就会导致量子位操控的保真度变低,而影响最终结果。在量子信息的角度看,可以用绝热过程来完成某些操作,但是哈密顿量的设计复杂,并且需要耗费比较多的操作时间。所以需要直接稳定微波功率。目前稳定微波功率的办法,主要可分为主动稳定和被动稳定两种。被动的功率稳定,主要是有使用温控稳定放大器温度,进而稳定增益。而主动的功率稳定,主要是利用伺服环路进行反馈,但是目前的方法一般都是控制放大器的增益,或者是在环路中加入压控衰减器,来实现系统功率稳定输出的。但是这样的方法调节范围小,响应速度慢,系统静差大等。
技术实现思路
本技术的目的是提供一种微波功率稳定装置。本技术的目的是通过以下技术方案实现的:本技术的微波功率稳定装置,包括依次连接的PID伺服器、微波混频器、微波功率放大器、定向耦合器、微波天线,所述微波混频器连接有微波源;所述定向耦合器依次通过包络检波器、低通滤波器与所述PID伺服器的差分放大器的输入端连接。由上述本技术提供的技术方案可以看出,本技术实施例提供的微波功率稳定装置,全部采用模拟电路,不存在由于数模转换或者模数转换而带来的延时,主要的带宽限制来自于PID伺服器,同时也由于使用了PID,可以消除系统静差,增强系统稳定性,能有效的稳定微波输出功率,保证量子位的操作稳定,实现高保真度的量子态操作。适用囚禁离子的量子信息实验技术,尤其适用于利用微波来操纵原子、分子等进行的量子信息、量子计算等对微波功率稳定度高的应用领域。附图说明图1为本技术实施例中微波混频器的电路简图;图2为本技术实施例提供的微波功率稳定装置的电路框图。具体实施方式下面将对本技术实施例作进一步地详细描述。本技术实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。本技术的微波功率稳定装置,其较佳的具体实施方式如图1、图2所示:包括依次连接的PID伺服器、微波混频器、微波功率放大器、定向耦合器、微波天线,所述微波混频器连接有微波源;所述定向耦合器依次通过包络检波器、低通滤波器与所述PID伺服器的差分放大器的输入端连接。所述差分放大器的输入端还连接有参考电压源。所述定向耦合器来对微波进行功率取样;所述包络检波器把微波的功率转换为电压信号;所述参考电压源提供高稳定度的参考电压,电压稳定度优于10ppm/℃;所述差分放大器对比实时微波幅度和参考电压之间的差异,并由此得到误差信号;所述PID伺服器对误差信号进行处理,消除系统静差,使系统的稳定性增加,实现闭环锁定;所述微波混频器作为可调衰减器,实现快速的功率调整,增大环路带宽,并防止大功率微波对混频器造成损坏。本技术的微波功率稳定装置,全部采用模拟电路,不存在由于数模转换或者模数转换而带来的延时,主要的带宽限制来自于PID伺服器,同时也由于使用了PID,可以消除系统静差,增强系统稳定性。本技术能有效的稳定微波输出功率,保证量子位的操作稳定,实现高保真度的量子态操作。本技术中:入射信号为连续的微波信号,这个微波信号可以是任意的偏振,也可以做任意的调频调相,但是不能包含调幅。微波混频器的作用是实现快速的微波幅度调制。一般的压控衰减器响应时间往往比较慢,上升、下降时间往往在几十微妙,甚至更长,这个严重制约了系统的环路带宽。如果微波混频器在使用的时候,LO端接输入信号,RF端输出,在IF端接一个直流电压信号,则可以通过调整IF端的电压大小,实现RF与LO端直接的可控的衰减,并且上升、下降时间可以在纳秒量级。微波功率放大器是一个连续工作的微波放大器,增益为30dB,用来提高最后发射的微波功率,最后输出功率大于20瓦。定向耦合器是用来实现对输出微波功率取样的功能。定向耦合器有三个端口,一个是输入端口,记为端口A,一个是输出端口,记为端口B,还有一个端口是耦合输出端口,记为端口C。包络检波器可以将微波信号的幅度变化检测出来,并以电压信号的方式对外输出。实现了微波功率快速转换为电压信号,上升时间在1微秒以内。PID伺服器包括了一个差分放大器,一个比例增益调节器,一个积分调节器,一个加法放大器。差分放大器可以将包络检波器传过来的取样微波信号幅度和参考电压信号相减,获得误差信号。所得的误差信号直接传给后面的比例积分调节器,处理之后,输出反馈信号给混频器的IF端口,实现闭环反馈。微波信号在微波混频器的LO端进入,在RF端输出,并进入微波功率放大器,随后输入到耦合器端口A。耦合器端口B连接包络检波器,包络检波器把微波的幅度电压值输出,经过低通滤波器后,输入到PID中,与参考电压进行差分运算后得到误差信号。误差信号经过比例积分运算,输出反馈信号给微波混频器的IF端,来调节RF与LO之间的透过率,从而达到对整个环路的控制。具体实施例:把待锁定的微波信号输入到混频器的本振(LO)端。需要注意的是,由于此时PID的工作参数上没有设置完成,为了防止损坏微波功率放大器,输入到混频器的微波信号应该小于-10dBm;把混频器的射频(RF)端连接到微波放大器的输出端;微波放大器的输出端连接耦合器的输入端;耦合器的输出端B连接微波天线,将微波广播出来,使用于后面的微波与原子相互作用的实验。如果没有微波天线,也可以连接其他的50欧负载,防止微波反射回来,损坏微波放大器;耦合器的耦合输出端A信号就是对输入信号的固定比例的取样,然后把耦合输出端C信号输入到包络检波器的输入端;把包络检波器的输出信号接到示波器中,示波器的输入阻抗设置为1M欧,查看信号是随时间缓慢变化的直流信号,并记下当前直流信号的电压幅度,电压记为vol伏。包络检波器的输出端连接差分放大器的输入端B,这里差分放大器的输入端的输入阻抗应该设计为1M欧;将参考电压源连接到差分放大器的输入端A,并设置参考电压源的电压,注意参考电压源的电压值应该要小于vol。差分放大器的输出信号就是误差信号;将误差信号输入到比例积分电路中,形成反馈信号,并将反馈信号接到微波混频器的中频(IF)端,形成闭环。调节比例积分伺服器的参数,使得整个反馈环路更加的稳定。以上所述,仅为本技术较佳的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本
的技术人员在本技术披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应该以权利要求书的保护范围为准。本文档来自技高网
...

【技术保护点】
1.一种微波功率稳定装置,其特征在于,包括依次连接的PID伺服器、微波混频器、微波功率放大器、定向耦合器、微波天线,所述微波混频器连接有微波源;所述定向耦合器依次通过包络检波器、低通滤波器与所述PID伺服器的差分放大器的输入端连接。

【技术特征摘要】
1.一种微波功率稳定装置,其特征在于,包括依次连接的PID伺服器、微波混频器、微波功率放大器、定向耦合器、微波天线,所述微波混频器连接有微波源;所述定向耦合器依次通...

【专利技术属性】
技术研发人员:胡长康崔金明黄运锋李传锋郭光灿
申请(专利权)人:中国科学技术大学
类型:新型
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1