一种多星协同测向定位观测系统优化设计与评估方法技术方案

技术编号:19485176 阅读:29 留言:0更新日期:2018-11-17 11:14
本发明专利技术提供了一种多星协同测向定位观测系统优化设计与评估方法,首先利用观测方程推导几何定位误差传递矩阵,根据误差传递矩阵对观测几何进行优化,再通过Fisher信息阵计算时序状态估计的误差Cramer‑Rao下限(CRLB),并与估计算法的Monte‑Carlo打靶结果进行比较,验证CRLB的有效性,然后利用CRLB分析观测次数增加时目标跟踪误差的衰减趋势规律、采样周期变化时目标跟踪误差的衰减量级规律、采样间隔增加时异步观测相对同步观测的跟踪误差相对变化,最后综合考虑观测成本,确定最优的观测系统设计。

【技术实现步骤摘要】
一种多星协同测向定位观测系统优化设计与评估方法
本专利技术涉及一种测向定位观测系统优化设计与评估方法,更具体的说,涉及一种利用几何定位误差传递矩阵和时序状态估计的误差Cramer-Rao下限,立足算法层面以上,从观测层面对多星协同测向定位效能进行优化的方法。
技术介绍
空间碎片等空间非合作目标的监测愈发受到各国的重视。随着对测量精度、观测视野、抗干扰性等要求的提高,发展基于光电传感器纯方位测量(测向定位)的天基无源定位技术是大势所趋。对测向定位跟踪技术的讨论不能止于算法,算法只是实现,真正的评估和设计还需要了解跟踪精度的影响因素及影响几何,所以有必要对跟踪精度进行定量分析,综合考虑各误差因素对跟踪性能的影响,助于明确系统设计指标,为总体设计提供理论指导。目前关于多星协同测向定位观测系统优化设计方法介绍较少,经文献检索,中国专利技术专利申请号201710234933.0,专利名称为“一种基于联合估计CRLB的分布式雷达最优构型构建方法”,其测量信息包括距离和方位,与本专利技术只针对测向估计不同,且只对观测几何进行了优化,没有涉及到时序状态估计中观测次数、采样周期、观测同步性等观测模式的优化,不能全面、有效地指导测向定位观测系统优化设计。
技术实现思路
针对现有技术中的缺陷,本专利技术所要解决的技术问题在于提供一种多星协同测向定位观测系统优化设计与评估方法,立足算法层面以上,利用几何定位误差传递矩阵和时序状态估计的Cramer-Rao下限分析观测模式对跟踪误差时序衰减规律的影响,从观测层面进行多星协同测向定位效能的优化。本专利技术所采用的技术方案如下:一种多星协同测向定位观测系统优化设计与评估方法,包括如下:根据多星协同测向定位任务需求,明确多星观测系统优化项目,包括观测几何、观测次数、采样周期、观测同步性;建立卫星对目标的观测方程,利用全微分和统计原理推导测量误差到定位误差的传递矩阵,并利用误差传递矩阵对观测几何进行优化,得到多星协同观测的最优几何配置;在最优几何配置的基础上,建立测量集对当前状态量的雅可比矩阵,形成总观测矩阵,并结合测量噪声的协方差矩阵,形成全部量测对当前状态的Fisher信息阵。再通过Fisher信息阵计算当前状态估计的误差Cramer-Rao下限(CRLB),其表征了当前观测条件下目标定位所能达到的理论最优精度。在相同的采样周期和同步观测条件下,利用CRLB分析观测次数增加时目标跟踪误差的衰减趋势规律,找到跟踪误差趋于稳定时需要的观测次数阈值;在相同的观测次数和同步观测条件下,利用CRLB分析采样周期变化时目标跟踪误差的衰减量级规律,预测观测一定时间后跟踪误差的大小,结合探测器性能确定最优的采样周期;在相同的采样周期和异步观测条件下,利用CRLB分析采样间隔增加时异步观测相对同步观测的跟踪误差相对变化,权衡定位精度和同步实现难易程度,确定星间的同步观测要求。根据以上量化规律,结合具体任务需求和观测成本,设计出符合当前任务的观测系统最优参数。进一步,上述观测几何包括星目几何与星目距离,其中,星目几何指星目单位矢量在空间的构型关系,如果是双星观测则仅有双星关于目标夹角这一层含义,若是多星观测则包含了星目在单位球面体中的多面体构型关系。进一步,上述测量误差到定位误差的传递矩阵,首先建立量测方程hm=hm(r,sm)其中hm为量测合成列向量,r为目标位置向量,sm为多星轨道位置合成列向量。根据全微分和统计原理可得dhm=H·dr+G·dsmdr=(HTH)-1HT·dhm-(HTH)-1HTG·dsm其中和分别视线测量误差方差和卫星定轨误差方差,Dh、Ds分别为视线误差和定轨误差的误差传递矩阵,具体为Dh、Ds完全由观测几何决定,可通过优化tr(Dh)和tr(Ds)得出最优几何配置。进一步,上述全部量测对当前状态的Fisher信息阵,是测量集所含待估量信息多少的一种量度,其定义为:JX(ZM)=E{[▽Xlnp(ZM|X)][▽Xlnp(ZM|X)]T}其中,ZM={zk,k=1,2,...,M}为积累至并包括当前时刻的测量集(方位角、俯仰角),p(ZM|X)为当前运动状态X(位置、速度、加速度、加加速度)关于ZM的条件概率密度。可推出全部量测对当前运动状态的Fisher信息阵为其中进一步,上述当前状态估计的CRLB为最小均方误差(MSE)意义下,无偏估计所能达到的协方差下限,即为Fisher信息阵的逆矩阵,矩阵不等式A≥B表示A-B为非负定矩阵。即测量越多,测量集所含的Fisher信息就越多,CRLB也就越小,可实现的状态估计误差就越小,而CRLB的时序衰减规律与具体的观测模式有关。进一步,上述目标跟踪误差的衰减趋势规律和观测次数阈值,同步观测条件下,随观测次数增加时,虽然状态估计误差的下降速率是一个非线性变化过程,但不同观测模式下其变化趋势是基本一致的。具体有位置估计误差的“增速下降——减速下降——缓慢趋于稳定”规律,和速度估计误差的“减速下降——快速趋于稳定”规律。观测次数阈值指状态估计误差趋于稳定时所积累的观测次数,分别有位置估计误差观测次数阈值和速度估计误差观测次数阈值等。进一步,上述目标跟踪误差的衰减量级规律,同步观测条件下,虽然不同观测模式下目标跟踪误差的衰减趋势和观测次数阈值基本一致,但采样周期不同时状态估计误差趋于稳定时的量级大小可能不同,所以采样周期决定了目标跟踪误差的衰减量级规律。而采样周期的大小与卫星能源消耗、数传能力、探测器能力等观测成本有关,故须根据衰减量级规律并权衡观测成本以确定符合系统任务的最优采样周期。进一步,上述异步观测的采样间隔,是指采样周期相同时,星间协同观测的最小时间间隔,如同步观测的采样间隔为0。所述步骤6中采样间隔增加时异步观测相对同步观测的跟踪误差相对变化,采样间隔越大,异步观测与同步观测的跟踪误差差距越大,但随着观测次数的增加,这种差距会逐渐减小,误差曲线逐渐趋于同步观测误差曲线。由于星间协同观测的同步性需要星地一体化软硬件的高精度配合,故须权衡采样间隔影响和同步实现难易程度,确定星间的同步观测要求。本专利技术利用观测方程推导几何定位误差传递矩阵,根据误差传递矩阵对观测几何进行优化。再通过Fisher信息阵计算时序状态估计的误差Cramer-Rao下限(CRLB),并与估计算法的Monte-Carlo打靶结果进行比较,验证CRLB的有效性。然后利用CRLB分析观测次数增加时目标跟踪误差的衰减趋势规律、采样周期变化时目标跟踪误差的衰减量级规律、采样间隔增加时异步观测相对同步观测的跟踪误差相对变化,最后综合考虑观测成本,确定最优的观测系统设计。附图说明通过阅读参照以下附图对非限制性实施例所作的详细描述,本专利技术的其它特征、目的和优点将会变得更明显:图1为本专利技术多星协同测向定位观测系统优化设计原理图;图2为EKF估计误差打靶结果与CRLB对比图;图3为观测次数影响下的跟踪误差衰减趋势规律;图4为采样周期影响下的跟踪误差衰减量级规律;图5为采样间隔影响下的异步观测跟踪误差规律。具体实施方式下面结合具体实施例对本专利技术进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本专利技术,但不以任何形式限制本专利技术。应当指出的是,对本领域的普通技术人员来说,在不脱离本专利技术构思本文档来自技高网...

【技术保护点】
1.一种多星协同测向定位观测系统优化设计与评估方法,其特征在于,包括:根据多星协同测向定位任务需求,明确多星观测系统优化项目,包括观测几何、观测次数、采样周期、观测同步性;建立卫星对目标的观测方程,利用全微分和统计原理推导测量误差到定位误差的传递矩阵,并利用误差传递矩阵对观测几何进行优化,得到多星协同观测的最优几何配置;在最优几何配置的基础上,建立测量集对当前状态量的雅可比矩阵,形成总观测矩阵,并结合测量噪声的协方差矩阵,形成全部量测对当前状态的Fisher信息阵,再通过Fisher信息阵计算当前状态估计的误差Cramer‑Rao下限CRLB,其表征了当前观测条件下目标定位所能达到的理论最优精度;在相同的采样周期和同步观测条件下,利用CRLB分析观测次数增加时目标跟踪误差的衰减趋势规律,找到跟踪误差趋于稳定时需要的观测次数阈值;在相同的观测次数和同步观测条件下,利用CRLB分析采样周期变化时目标跟踪误差的衰减量级规律,预测观测一定时间后跟踪误差的大小,结合探测器性能确定最优的采样周期;在相同的采样周期和异步观测条件下,利用CRLB分析采样间隔增加时异步观测相对同步观测的跟踪误差相对变化,权衡定位精度和同步实现难易程度,确定星间的同步观测要求;根据以上量化规律,结合具体任务需求和观测成本,设计出符合当前任务的观测系统最优参数。...

【技术特征摘要】
1.一种多星协同测向定位观测系统优化设计与评估方法,其特征在于,包括:根据多星协同测向定位任务需求,明确多星观测系统优化项目,包括观测几何、观测次数、采样周期、观测同步性;建立卫星对目标的观测方程,利用全微分和统计原理推导测量误差到定位误差的传递矩阵,并利用误差传递矩阵对观测几何进行优化,得到多星协同观测的最优几何配置;在最优几何配置的基础上,建立测量集对当前状态量的雅可比矩阵,形成总观测矩阵,并结合测量噪声的协方差矩阵,形成全部量测对当前状态的Fisher信息阵,再通过Fisher信息阵计算当前状态估计的误差Cramer-Rao下限CRLB,其表征了当前观测条件下目标定位所能达到的理论最优精度;在相同的采样周期和同步观测条件下,利用CRLB分析观测次数增加时目标跟踪误差的衰减趋势规律,找到跟踪误差趋于稳定时需要的观测次数阈值;在相同的观测次数和同步观测条件下,利用CRLB分析采样周期变化时目标跟踪误差的衰减量级规律,预测观测一定时间后跟踪误差的大小,结合探测器性能确定最优的采样周期;在相同的采样周期和异步观测条件下,利用CRLB分析采样间隔增加时异步观测相对同步观测的跟踪误差相对变化,权衡定位精度和同步实现难易程度,确定星间的同步观测要求;根据以上量化规律,结合具体任务需求和观测成本,设计出符合当前任务的观测系统最优参数。2.根据权利要求1所述的多星协同测向定位观测系统优化设计与评估方法,其特征在于,观测几何包括星目几何与星目距离,其中,星目几何指星目单位矢量在空间的构型关系,如果是双星观测则仅有双星关于目标夹角这一层含义,若是多星观测则包含了星目在单位球面体中的多面体构型关系。3.根据权利要求1所述的多星协同测向定位观测系统优化设计与评估方法,其特征在于,推导测量误差到定位误差的传递矩阵的方法是,首先建立量测方程hm=hm(r,sm)其中hm为量测合成列向量,r为目标位置向量,sm为多星轨道位置合成列向量,根据全微分和统计原理可得dhm=H·dr+G·dsmdr=(HTH)-1HT·dhm-(HTH)-1HTG·dsm其中和分别视线测量误差方差和卫星定轨误差方差,Dh、Ds分别为视线误差和定轨误差的误差传递矩阵,具体为Dh、Ds完全由观测几何决定,通过优化tr(Dh)和tr(Ds)得出最优几何配置。4.根据权利要求1所述的多星协同测向定位观测系统优化设计与评估方法,其特征在于,全部量测对当前状态的Fisher...

【专利技术属性】
技术研发人员:梁金金宋效正陆国平俞洁吕旺
申请(专利权)人:上海卫星工程研究所
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1