一种电化学电容器电极片的原位制备方法及其应用技术

技术编号:19430513 阅读:23 留言:0更新日期:2018-11-14 11:38
本发明专利技术公开了一种电化学电容器电极片的原位制备方法,以泡沫镍为导电基体,首先通过电化学循环伏安法将泡沫镍表面纳米化;接着将它浸入由镍盐、钴盐、葡萄糖和双氰胺组成的前驱体混合溶液中,干燥后高温热解,得到负载在泡沫镍上的镍‑钴‑氮掺杂的纳米碳空心管(NiCoN‑C/nano‑G‑Ni);接着将NiCoN‑C/nano‑G‑Ni依次浸入温度分别为40

【技术实现步骤摘要】
一种电化学电容器电极片的原位制备方法及其应用
本专利技术属于新型电化学能源材料领域,具体涉及到一种电化学电容器电极片的原位制备方法及其应用。
技术介绍
超级电容器又称电化学电容器,它是一种新型的电化学储能器件,从原理上说,它介于常规电容器与二次电池之间,因此,超级电容既有常规电容器功率密度大的特点,同时也有二次电池能量密度高的优点。另外,超级电容器作为新型储能装置,还具有对环境无污染、效率高、循环寿命长、使用温度范围宽、安全性高等特点。由于超级电容器具有独特的优势,它在新能源发电、电动汽车、信息技术、航空航天、国防科技等领域中具有广泛的应用前景。实践表明,超级电容器用于可再生能源分布式电网的储能单元时,可以有效提高电网的稳定性。而超级电容器在单独运行时,可作为太阳能或风能发电装置的辅助电源,可将发电装置所产生的能量以较快的速度储存起来,并按照设计要求释放。如太阳能路灯在白天由太阳能提供电源并对超级电容器充电,晚上则由超级电容器提供电力.此外,超级电容器还可以与充电电池组成复合电源系统,既可满足电动车启动、加速和爬坡时的高功率要求,又可延长蓄电池的循环使用寿命,实现电动车动力系统性能的最优化.当前,国内外已实现了超级电容器的商品化生产,但还存在着价格较高、能量密度低等问题,极大地限制了超级电容器的大规模应用.超级电容器主要由集流体、电极、电解质和隔膜等4部分组成,其中电极材料是影响超级电容器性能和生产成本的最关键因素.研究和开发高性能、低成本的电极材料是超级电容器研发工作的重要内容.目前研究较多的超级电容器电极材料主要有碳材料、金属氧化物(或者氢氧化物)、导电聚合物等,而碳材料和金属氧化物电极材料的商品化相对较成熟,是当前研究的热点.研究表明,一般单一催化剂材料的电化学性能有限,所以通常采用复合材料作为电极材料,从而可以充分发挥各个材料的特点与优势,也即采用所谓“协同效应”,有利于提高材料的综合电化学性能.当前,国内外制备高能量密度、高功率密度和低成本的新型复合材料(如石墨烯、二氧化锰复合材料等)的研究热点是复合体系的筛选以及新型的纳米复合技术。目前,对超级电容器电极材料的研究主要集中于纳米材料的研究,然而,这些拥有较大比表面积的纳米活性材料大多为粉体,在组装超级成电容器或单电极性能测试的时候均需要稳定、均匀地负载在导电基底上,不仅需要添加导电剂及有机粘合剂,通常还需要在高于5MPa的压力下压成电极,这一过程不但会丧失活性材料的部分比表面积,降低活性材料的利用率,增加电极材料内阻,同时活性材料也很难均匀涂覆于导电剂上;此外,将粉体涂覆在导休基体上的过程也十分繁琐。上述这些问题仍然是在组装超级电容器时难以攻克的实际难题。
技术实现思路
本专利技术的目的是提供一种电化学电容器电极片,本专利技术的目的还提供了一种电化学电容器电极片的原位制备方法及其应用。为达到上述目的,本专利技术的实施方案为:一种电化学电容器电极片的原位制备方法,包括以下步骤:(1)将泡沫镍(G-Ni)在10wt%的碳酸钠溶液中,于50oC下处理30min,随后用大量水冲洗,得到清洗后的G-Ni;接着,以G-Ni为工作电极、饱和甘汞(SCE)为参比电极、铂片为对电极,在1mol·L-1的NaOH溶液中,在电位为0.1~0.6V(vsSCE)的范围内,以扫描速度为100mVs-1反复循环扫描200次,之后将G-Ni在水中浸泡,再在空气中室温下干燥,得到表面纳米化的泡沫镍(nano-G-Ni);(2)将醋酸镍、醋酸钴、葡萄糖和双氰胺加入到水中,搅拌,使固体完全溶解形成均匀溶液,记为前驱体溶液;接着将上述nano-G-Ni浸入前驱体溶液中,在缓慢搅拌下保持1min,之后取出nano-G-Ni,在热空气流中干燥5min后,再浸入前驱体溶液中,在缓慢搅拌下保持1min,之后再取出nano-G-Ni,在空气中干燥5min;将这一浸入/干燥过程重复多次后,得到前驱体负载的nano-G-Ni;(3)将上述前驱体负载的nano-G-Ni置于管式炉中,在氮气氛中,以4oCmin-1的升温速度升温到850oC,并在此温度下保持1h;随后自然冷却至室温,得到镍钴氮掺杂碳空心管修饰的纳米化泡沫镍(NiCoN-Hollow-C/nano-G-Ni)。(4)将上述NiCoN-Hollow-C/nano-G-Ni浸入温度为40oC的0.1molL-1醋酸锰溶液中,在缓慢搅拌下保持5min,之后取出NiCoN-Hollow-C/nano-G-Ni,在热空气流中干燥20min后,再浸入温度为80oC的0.15molL-1高锰酸钾溶液中,在缓慢搅拌下保持30min,之后取出,在热空气流中干燥20min后,再将其在氮气氛中,以5oCmin-1的升温速度升温到200oC,并在此温度下保持0.5h,随后继续以同样的升温速度加热至250oC,并在此温度下保持1h;随后自然冷却至室温,得到二氧化锰颗粒镶嵌在碳空心管表面的电极片,标记为MnO2/NiCoN-Hollow-C/nano-G-Ni。步骤(2)中所述浸没/干燥过程重复多次是指5次,10次,或20次。根据所述方法制备的一种电化学电容器电极片的比电容测试的应用。本专利技术首先采用循环伏安法将泡沫镍表面纳米化,使其表面能够吸附大量的、由醋酸镍、醋酸钴、葡萄糖和双氰胺组成的前驱体溶液;将其热解后产生镍钴氮掺杂的碳空心管,并紧紧地缠绕在泡沫镍的骨架上;随后通过依次吸附醋酸锰与高锰酸钾,在形成的碳空心管表面沉积二氧化锰纳米颗粒;最后再通过一定温度下的热处理,使二氧化锰纳米颗粒进一步紧紧地镶嵌在碳空心管表面,这样就在泡沫镍表面形成了二氧化锰-镍钴氮掺杂碳空心管的复合物(MnO2/NiCoN-HollowC/nano-G-Ni)。这样形成的MnO2/NiCoN-Hollow-C/nano-G-Ni可以直接作为电极片应用于电化学电容器,具有过程简单、催化剂活性无损失、催化剂分布均匀等特点,在电化学电容器中具有重要应用。具体实施方式实施例1:(1)将泡沫镍(G-Ni)在10%(wt%)的碳酸钠溶液中,于50oC下处理30min,随后用大量水冲洗,得到清洗后的G-Ni;接着,以G-Ni为工作电极、饱和甘汞(SCE)为参比电极、铂片为对电极,在1mol·L-1的NaOH溶液中,在电位为0.1~0.6V(vsSCE)的范围内,以扫描速度为100mVs-1反复循环扫描200次,之后将G-Ni在水中浸泡,再在空气中室温下干燥,得到表面纳米化的泡沫镍(nano-G-Ni)。(2)将0.1g醋酸镍、0.1g醋酸钴、0.2g葡萄糖和2.5g双氰胺加入到35mL水中,搅拌,使固体完全溶解形成均匀溶液(记为前驱体溶液);接着将上述nano-G-Ni浸入前驱体溶液中,在缓慢搅拌下保持1min,之后取出nano-G-Ni,在热空气流中干燥5min后,再浸入前驱体溶液中,在缓慢搅拌下保持1min,之后再取出nano-G-Ni,在空气中干燥5min;将这一浸入/干燥过程重复5次后,得到前驱体负载的nano-G-Ni;(3)将上述前驱体负载的nano-G-Ni置于管式炉中,在氮气氛中,以4oCmin-1的升温速度升温到850oC,并在此温度下保持1h;随后自然冷却至室温,得到镍钴氮掺杂碳空本文档来自技高网
...

【技术保护点】
1.一种电化学电容器电极片的原位制备方法,其特征在于,包括以下步骤:(1)将泡沫镍(G‑Ni)在10 wt %的碳酸钠溶液中,于50oC下处理30min,随后用大量水冲洗,得到清洗后的G‑Ni;接着,以G‑Ni为工作电极、饱和甘汞(SCE)为参比电极、铂片为对电极,在1 mol·L‑1的NaOH溶液中,在电位为0.1 ~ 0.6 V(vs SCE) 的范围内,以扫描速度为100 mV s‑1反复循环扫描200次,之后将G‑Ni在水中浸泡,再在空气中室温下干燥,得到表面纳米化的泡沫镍(nano‑G‑Ni);(2)将醋酸镍、醋酸钴、葡萄糖和双氰胺加入到水中,搅拌,使固体完全溶解形成均匀溶液,记为前驱体溶液;接着将上述nano‑G‑Ni浸入前驱体溶液中,在缓慢搅拌下保持1 min,之后取出nano‑G‑Ni,在热空气流中干燥5 min后,再浸入前驱体溶液中,在缓慢搅拌下保持1min,之后再取出nano‑G‑Ni,在空气中干燥5 min;将这一浸入/干燥过程重复多次后,得到前驱体负载的nano‑G‑Ni;(3)将上述前驱体负载的nano‑G‑Ni置于管式炉中,在氮气氛中,以4 oC min‑1的升温速度升温到850oC,并在此温度下保持1h;随后自然冷却至室温,得到镍钴氮掺杂碳空心管修饰的纳米化泡沫镍(NiCoN‑Hollow‑C/nano‑G‑Ni);(4)将上述NiCoN‑Hollow‑C/nano‑G‑Ni浸入温度为40oC的0.1mol L‑1醋酸锰溶液中,在缓慢搅拌下保持5 min,之后取出NiCoN‑Hollow‑C/nano‑G‑Ni,在热空气流中干燥20 min后,再浸入温度为80oC的0.15 mol L‑1高锰酸钾溶液中,在缓慢搅拌下保持30 min,之后取出,在热空气流中干燥20 min后,再将其在氮气氛中,以5 oC min‑1的升温速度升温到200oC,并在此温度下保持0.5h,随后继续以同样的升温速度加热至250oC,并在此温度下保持1h;随后自然冷却至室温,得到二氧化锰颗粒镶嵌在碳空心管表面的电极片,标记为MnO2/NiCoN‑Hollow‑C/nano‑G‑Ni。...

【技术特征摘要】
1.一种电化学电容器电极片的原位制备方法,其特征在于,包括以下步骤:(1)将泡沫镍(G-Ni)在10wt%的碳酸钠溶液中,于50oC下处理30min,随后用大量水冲洗,得到清洗后的G-Ni;接着,以G-Ni为工作电极、饱和甘汞(SCE)为参比电极、铂片为对电极,在1mol·L-1的NaOH溶液中,在电位为0.1~0.6V(vsSCE)的范围内,以扫描速度为100mVs-1反复循环扫描200次,之后将G-Ni在水中浸泡,再在空气中室温下干燥,得到表面纳米化的泡沫镍(nano-G-Ni);(2)将醋酸镍、醋酸钴、葡萄糖和双氰胺加入到水中,搅拌,使固体完全溶解形成均匀溶液,记为前驱体溶液;接着将上述nano-G-Ni浸入前驱体溶液中,在缓慢搅拌下保持1min,之后取出nano-G-Ni,在热空气流中干燥5min后,再浸入前驱体溶液中,在缓慢搅拌下保持1min,之后再取出nano-G-Ni,在空气中干燥5min;将这一浸入/干燥过程重复多次后,得到前驱体负载的nano-G-Ni;(3)将上述前驱体负载的nano-G-Ni置于管式炉中,在氮气氛中,以4oCmin-1的升温速度升温到85...

【专利技术属性】
技术研发人员:易清风杨孝昆陈瑶
申请(专利权)人:湖南科技大学
类型:发明
国别省市:湖南,43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1