一种地下空间构建方法技术

技术编号:19312031 阅读:26 留言:0更新日期:2018-11-03 07:13
本发明专利技术公开了一种地下空间构建方法,包括地下空间构建准备、地下空洞内腔扫描、地下空间三维建模、去除多余的地下空洞原始内表面、3D打印地下空间三维实体等步骤。在地形探测及处理机器人单元完成对地下空洞的扫描后构建地下空洞三维空间模型,中央控制计算机根据应力计算分析结果和输入的安全系数依次拟合构建表面支护层模型、柱形支护模型、墙板模型和楼板模型并生成打印路径和打印基准坐标,地形探测及处理机器人单元去除部分采空区的内表面后,3D打印机器人单元依照打印路径在地下空洞内部直接3D打印地下空间三维模型的实体,特别适用于基于地下空洞的深层地下空间构建作业。

【技术实现步骤摘要】
一种地下空间构建方法
本专利技术涉及一种地下空间构建方法,具体是一种基于如煤矿井下煤炭采空区、煤炭地下气化过程中形成的大面积煤层燃空区等人为岩土活动产生的地下空洞或者天然地质运动在地表下产生的一系列空洞等自然地下空洞的地下空间构建方法,属于地下工程

技术介绍
地下空间是指属于地表以下,主要针对建筑方面来说的一个名词,它的范围很广,比如地下商城、地下停车场、地铁、穿海隧道等建筑空间。地下空间的开发利用是城市发展到一定阶段的产物,城市化加速发展使得城市地下空间开发利用同步加快发展成为必然。我国现有的地下空间开发利用多是针对地下浅层部分进行的开发利用,而随着我国一线城市地下空间的开发利用,地下浅层部分将会利用完毕,为了综合利用地下空间资源,地下空间开发将逐步向深层发展,深层地下空间资源的开发利用已成为未来城市现代化建设的主要课题。地下空洞是指地表以下被岩层覆盖的空间,一般是指空间较大的、位于地表以下深层的地下空腔。人为岩土活动如在煤矿开采中地下开采占世界煤矿生产的60%,而地下开采过程中将地下煤炭或煤矸石等开采完成后往往留下大面积的煤炭采空区形成地下空洞;另外,煤炭地下气化技术不仅可以回收矿井遗弃的煤炭资源,而且还可以用于开采井工难以开采或开采经济性、安全性较差的薄煤层、深部煤层、“三下”压煤和高硫、高灰、高瓦斯煤层,虽然煤炭地下气化燃烧后的灰渣留在地下,但煤炭地下气化过程中也会形成的大面积煤层燃空区地下空洞;另外,天然地质运动在地表下也会产生一系列地下空洞。虽然地下空洞可以作为深层地下空间的开发基础,但传统的深层地下空间的开发与浅层地下空间的开发不同,深层地下空间开发无法像浅层地下空间开发一样先在地表开挖基坑、再在基坑内进行施工,传统的深层地下空间开发通常是基于BIM技术和深层开挖装备及技术的基础上,通常是先进行开挖并支护后采用如预制钢筋混凝土柱地基基础、预制外墙、预制楼板等PC构件进行吊装拼接施工工序,再进行压力灌浆与现浇节点处理等后续施工工序。传统的深层地下空间开发施工过程中通常需要空间占用较大的输送设备、支护设备和起重设备,通常需要耗费大量人力物力,深层地下空间开发成本较大;另外,深层地下空间在开挖后深层地下空间的原始应力状态通常被破坏,从而致使应力重新分布,深层地下空间施工过程中在上覆压力和地下水等因素的作用下,深层地下空间极易发生如片帮、冒顶、突水、岩爆、冲击地压等多种形式的地质灾害,施工环境恶劣、且施工作业安全性较差。
技术实现思路
针对上述问题,本专利技术提供一种地下空间构建方法,自动化程度高,可以在实现对地下空洞内部进行有效支护的前提下实现基于地下空洞的深层地下空间的构建,同时实现降低开发成本、降低施工安全隐患,特别适用于基于地下空洞的深层地下空间构建作业。为实现上述目的,地下空间构建系统包括地形探测及处理机器人单元、3D打印机器人单元和集中电控单元;所述的地形探测及处理机器人单元包括全地形行走底盘、探测机械臂、旋挖机械臂和车载电控装置;全地形行走底盘设置在地形探测及处理机器人单元的底部,全地形行走底盘包括电控驱动机构和转向控制机构;探测机械臂的底端安装在全地形行走底盘上,探测机械臂的顶端设有探测装置,探测装置包括探测头,探测头包括距离传感器、扫描仪、陀螺仪、探测头角度定位控制驱动,探测头角度定位控制驱动至少包括沿左右水平方向为中轴线旋转移动的A坐标旋转驱动机构和沿前后水平方向为中轴线旋转移动的B坐标旋转驱动机构;旋挖机械臂的底端安装在全地形行走底盘上,旋挖机械臂包括旋挖机械臂驱动,旋挖机械臂驱动至少包括控制旋挖机械臂左右水平方向移动的X坐标驱动机构、控制旋挖机械臂前后水平方向移动的Y坐标驱动机构、控制旋挖机械臂竖直方向移动的Z坐标驱动机构,旋挖机械臂的末节上设有具有旋挖驱动的旋挖截割头;车载电控装置固定安装在全地形行走底盘上,车载电控装置包括工业控制计算机、探测机器人行走控制回路、探测头探测角度控制回路、旋挖控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机与探测头的探测头角度定位控制驱动电连接,工业控制计算机分别与旋挖机械臂驱动、旋挖截割头的旋挖驱动电连接;所述的3D打印机器人单元包括全地形行走底盘、打印机械臂、打印材料输入装置和打印电控装置;全地形行走底盘设置在3D打印机器人单元的底部,全地形行走底盘包括电控驱动机构和转向控制机构;打印机械臂安装在全地形行走底盘上,打印机械臂包括打印机械臂驱动,打印机械臂驱动至少包括控制打印机械臂左右水平方向移动的X坐标驱动机构、控制打印机械臂前后水平方向移动的Y坐标驱动机构、控制打印机械臂竖直方向移动的Z坐标驱动机构,打印机械臂的末节上设有3D打印装置,3D打印装置包括3D打印喷头;打印材料输入装置包括打印材料泵入机构,打印材料泵入机构的输入端与打印材料供给子单元连接,打印材料供给子单元供应打印材料,打印材料泵入机构的输出端与3D打印喷头通过打印材料输出管路连接;打印电控装置固定安装在全地形行走底盘上,打印电控装置包括工业控制计算机、3D打印机器人行走控制回路、3D打印喷头位置控制回路、打印材料泵入机构控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机分别与打印机械臂驱动、打印材料泵入机构电连接;所述的集中电控单元包括中央控制计算机、探测控制回路、数据建模回路、探测机器人位置反馈修正回路、地形处理回路、3D打印控制回路,中央控制计算机分别与探测头的距离传感器、扫描仪、陀螺仪电连接,中央控制计算机分别与车载电控装置的工业控制计算机和打印电控装置的工业控制计算机电连接;地下空间构建方法具体包括以下步骤:a.地下空间构建准备:通过地质雷达探测地下空洞的大概位置后,在保证掘进贯通点附近的原始岩层的支护强度较大的前提下选择合适的掘进贯通点,通过掘进机经掘进贯通点掘进出与地下空洞贯通的巷道并对该巷道进行有效支护,然后将地形探测及处理机器人单元和3D打印机器人单元置于与地下空洞连通的巷道内;b.地下空洞内腔扫描:集中电控单元控制探测控制回路、探测机器人位置反馈修正回路、数据建模回路开始工作,中央控制计算机发出指令使车载电控装置的工业控制计算机控制地形探测及处理机器人单元向地下空洞内部步进并对地下空洞的内腔进行扫描后坐标回退至初始位置,中央控制计算机将平面扫描数据进行同一基准的拟合并三维建模后生成地下空洞三维空间模型,然后进行存储;c.地下空间三维建模:中央控制计算机根据输入的地下空洞外围环境地质数据对地下空洞三维空间模型的外部进行施加应力场计算分析,并对地下空洞三维空间模型的稳定性、应力、位移、裂隙、渗透性、声特性、光特性、电特性、磁特性和结构特性等参数的演化过程进行计算分析,然后中央控制计算机以地下空洞三维空间模型为基础、以不暴露地下空洞原始内表面为原则在地下空洞三维空间模型的内部表面拟合构建初始表面支护层模型,然后中央控制计算机根据地下空洞空间利用最大化的原则在初始表面支护层模型的基础上向外部扩展拟合生成第二表面支护层模型,然后中央控制计算机以第二表面支护层模型为基础将在第二表面支护层模型上已暴露的部分地下空洞原始内表面进行模拟去除,然后中央控制计算机根据输入本文档来自技高网
...

【技术保护点】
1.一种地下空间构建方法,所使用的地下空间构建系统包括地形探测及处理机器人单元(1)、3D打印机器人单元(2)和集中电控单元(3);所述的地形探测及处理机器人单元(1)包括全地形行走底盘、探测机械臂(11)、旋挖机械臂和车载电控装置(12);全地形行走底盘设置在地形探测及处理机器人单元(1)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;探测机械臂(11)的底端安装在全地形行走底盘上,探测机械臂(11)的顶端设有探测装置,探测装置包括探测头(13),探测头(13)包括距离传感器、扫描仪、陀螺仪、探测头角度定位控制驱动,探测头角度定位控制驱动至少包括沿左右水平方向为中轴线旋转移动的A坐标旋转驱动机构和沿前后水平方向为中轴线旋转移动的B坐标旋转驱动机构;旋挖机械臂的底端安装在全地形行走底盘上,旋挖机械臂包括旋挖机械臂驱动,旋挖机械臂驱动至少包括控制旋挖机械臂左右水平方向移动的X坐标驱动机构、控制旋挖机械臂前后水平方向移动的Y坐标驱动机构、控制旋挖机械臂竖直方向移动的Z坐标驱动机构,旋挖机械臂的末节上设有具有旋挖驱动的旋挖截割头;车载电控装置(12)固定安装在全地形行走底盘上,车载电控装置(12)包括工业控制计算机、探测机器人行走控制回路、探测头探测角度控制回路、旋挖控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机与探测头(13)的探测头角度定位控制驱动电连接,工业控制计算机分别与旋挖机械臂驱动、旋挖截割头的旋挖驱动电连接;所述的3D打印机器人单元(2)包括全地形行走底盘、打印机械臂(21)、打印材料输入装置(22)和打印电控装置(23);全地形行走底盘设置在3D打印机器人单元(2)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;打印机械臂(21)安装在全地形行走底盘上,打印机械臂(21)包括打印机械臂驱动,打印机械臂驱动至少包括控制打印机械臂左右水平方向移动的X坐标驱动机构、控制打印机械臂前后水平方向移动的Y坐标驱动机构、控制打印机械臂竖直方向移动的Z坐标驱动机构,打印机械臂(21)的末节上设有3D打印装置,3D打印装置包括3D打印喷头(24);打印材料输入装置(22)包括打印材料泵入机构,打印材料泵入机构的输入端与打印材料供给子单元连接,打印材料供给子单元供应打印材料,打印材料泵入机构的输出端与3D打印喷头(24)通过打印材料输出管路连接;打印电控装置(23)固定安装在全地形行走底盘上,打印电控装置(23)包括工业控制计算机、3D打印机器人行走控制回路、3D打印喷头位置控制回路、打印材料泵入机构控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机分别与打印机械臂驱动、打印材料泵入机构电连接;所述的集中电控单元(3)包括中央控制计算机、探测控制回路、数据建模回路、探测机器人位置反馈修正回路、地形处理回路、3D打印控制回路,中央控制计算机分别与探测头(13)的距离传感器、扫描仪、陀螺仪电连接,中央控制计算机分别与车载电控装置(12)的工业控制计算机和打印电控装置(23)的工业控制计算机电连接;其特征在于,地下空间构建方法具体包括以下步骤:a.地下空间构建准备:通过地质雷达探测地下空洞的大概位置后,在保证掘进贯通点附近的原始岩层的支护强度较大的前提下选择合适的掘进贯通点,通过掘进机经掘进贯通点掘进出与地下空洞贯通的巷道并对该巷道进行有效支护,然后将地形探测及处理机器人单元(1)和3D打印机器人单元(2)置于与地下空洞连通的巷道内;b.地下空洞内腔扫描:集中电控单元(3)控制探测控制回路、探测机器人位置反馈修正回路、数据建模回路开始工作,中央控制计算机发出指令使车载电控装置(12)的工业控制计算机控制地形探测及处理机器人单元(1)向地下空洞内部步进并对地下空洞的内腔进行扫描后坐标回退至初始位置,中央控制计算机将平面扫描数据进行同一基准的拟合并三维建模后生成地下空洞三维空间模型,然后进行存储;c.地下空间三维建模:中央控制计算机根据输入的地下空洞外围环境地质数据对地下空洞三维空间模型的外部进行施加应力场计算分析,并对地下空洞三维空间模型的稳定性、应力、位移、裂隙、渗透性、声特性、光特性、电特性、磁特性和结构特性等参数的演化过程进行计算分析,然后中央控制计算机以地下空洞三维空间模型为基础、以不暴露地下空洞原始内表面为原则在地下空洞三维空间模型的内部表面拟合构建初始表面支护层模型,然后中央控制计算机根据地下空洞空间利用最大化的原则在初始表面支护层模型的基础上向外部扩展拟合生成第二表面支护层模型,然后中央控制计算机以第二表面支护层模型为基础将在第二表面支护层模型上已暴露的部分地下空洞原始内表面进行模拟去除,然后中央控制计算机根据输入的地下空洞外围...

【技术特征摘要】
1.一种地下空间构建方法,所使用的地下空间构建系统包括地形探测及处理机器人单元(1)、3D打印机器人单元(2)和集中电控单元(3);所述的地形探测及处理机器人单元(1)包括全地形行走底盘、探测机械臂(11)、旋挖机械臂和车载电控装置(12);全地形行走底盘设置在地形探测及处理机器人单元(1)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;探测机械臂(11)的底端安装在全地形行走底盘上,探测机械臂(11)的顶端设有探测装置,探测装置包括探测头(13),探测头(13)包括距离传感器、扫描仪、陀螺仪、探测头角度定位控制驱动,探测头角度定位控制驱动至少包括沿左右水平方向为中轴线旋转移动的A坐标旋转驱动机构和沿前后水平方向为中轴线旋转移动的B坐标旋转驱动机构;旋挖机械臂的底端安装在全地形行走底盘上,旋挖机械臂包括旋挖机械臂驱动,旋挖机械臂驱动至少包括控制旋挖机械臂左右水平方向移动的X坐标驱动机构、控制旋挖机械臂前后水平方向移动的Y坐标驱动机构、控制旋挖机械臂竖直方向移动的Z坐标驱动机构,旋挖机械臂的末节上设有具有旋挖驱动的旋挖截割头;车载电控装置(12)固定安装在全地形行走底盘上,车载电控装置(12)包括工业控制计算机、探测机器人行走控制回路、探测头探测角度控制回路、旋挖控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机与探测头(13)的探测头角度定位控制驱动电连接,工业控制计算机分别与旋挖机械臂驱动、旋挖截割头的旋挖驱动电连接;所述的3D打印机器人单元(2)包括全地形行走底盘、打印机械臂(21)、打印材料输入装置(22)和打印电控装置(23);全地形行走底盘设置在3D打印机器人单元(2)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;打印机械臂(21)安装在全地形行走底盘上,打印机械臂(21)包括打印机械臂驱动,打印机械臂驱动至少包括控制打印机械臂左右水平方向移动的X坐标驱动机构、控制打印机械臂前后水平方向移动的Y坐标驱动机构、控制打印机械臂竖直方向移动的Z坐标驱动机构,打印机械臂(21)的末节上设有3D打印装置,3D打印装置包括3D打印喷头(24);打印材料输入装置(22)包括打印材料泵入机构,打印材料泵入机构的输入端与打印材料供给子单元连接,打印材料供给子单元供应打印材料,打印材料泵入机构的输出端与3D打印喷头(24)通过打印材料输出管路连接;打印电控装置(23)固定安装在全地形行走底盘上,打印电控装置(23)包括工业控制计算机、3D打印机器人行走控制回路、3D打印喷头位置控制回路、打印材料泵入机构控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机分别与打印机械臂驱动、打印材料泵入机构电连接;所述的集中电控单元(3)包括中央控制计算机、探测控制回路、数据建模回路、探测机器人位置反馈修正回路、地形处理回路、3D打印控制回路,中央控制计算机分别与探测头(13)的距离传感器、扫描仪、陀螺仪电连接,中央控制计算机分别与车载电控装置(12)的工业控制计算机和打印电控装置(23)的工业控制计算机电连接;其特征在于,地下空间构建方法具体包括以下步骤:a.地下空间构建准备:通过地质雷达探测地下空洞的大概位置后,在保证掘进贯通点附近的原始岩层的支护强度较大的前提下选择合适的掘进贯通点,通过掘进机经掘进贯通点掘进出与地下空洞贯通的巷道并对该巷道进行有效支护,然后将地形探测及处理机器人单元(1)和3D打印机器人单元(2)置于与地下空洞连通的巷道内;b.地下空洞内腔扫描:集中电控单元(3)控制探测控制回路、探测机器人位置反馈修正回路、数据建模回路开始工作,中央控制计算机发出指令使车载电控装置(12)的工业控制计算机控制地形探测及处理机器人单元(1)向地下空洞内部步进并对地下空洞的内腔进行扫描后坐标回退至初始位置,中央控制计算机将平面扫描数据进行同一基准的拟合并三维建模后生成地下空洞三维空间模型,然后进行存储;c.地下空间三维建模:中央控制计算机根据输入的地下空洞外围环境地质数据对地下空洞三维空间模型的外部进行施加应力场计算分析,并对地下空洞三维空间模型的稳定性、应力、位移、裂隙、渗透性、声特性、光特性、电特性、磁特性和结构特性等参数的演化过程进行计算分析,然后中央控制计算机以地下空洞三维空间模型为基础、以不暴露地下空洞原始内表面为原则在地下空洞三维空间模型的内部表面拟合构建初始表面支护层模型,然后中央控制计算机根据地下空洞空间利用最大化的原则在初始表面支护层模型的基础上向外部扩展拟合生成第二表面支护层模型,然后中央控制计算机以第二表面支护层模型为基础将在第二表面支护层模型上已暴露的部分地下空洞原始内表面进行模拟去除,然后中央控制计算机根据输入的地下空洞外围环境地质数据对已去除部分地下空洞原始内表面的地下空洞三维空间模型的外部进行施加应力场重新计算分析,以此类推,直至拟合生成设定的安全系数范围内的最终表面支护层模型并存储,然后中央控制计算机以最终表面支护层模型为基础拟合生成需去除的已暴露地下空洞原始内表面模型并存储;然后中央控制计算机在最终表面支护层模型基础上再根据应力计算分析结果和输入的安全系数依次在对应地下空洞三维空间模型内部表面的应力集中点位置和稳定性不高的位置拟合构建柱形支护模型,然后在柱形支护模型基础上根据地下空洞的空间布局拟合构建连接在柱形支护模型之间的墙板模型和楼板模型,最终拟合生成层状隔段结构的地下空间三维模型并存储地下空间三维模型坐标位置信息;然后中央控制计算机先以参照坐标原点规划并存储需去除的已暴露地下空洞原始内表面模型的去除路径和去除基准坐标,再以参照坐标原点规划并存储最终表面支护层模型的打印路径和打印基准坐标,再以参照坐标原点规划并存储柱形支护模型的打印路径和打印基准坐标,最后以参照坐标原点规划并存储墙板模型和楼板模型的打印路径和打印基准坐标;d.去除多余的地下空洞原始内表面:地形处理回路开始工作,中央控制计算机发出指令使车载电控装置(12)的工业控制计算机控制地形探测及处理机器人单元(1)按照需去除的已暴露地下空洞原始内表面模型的去除路径坐标移动至去除基准坐标位置,然后车载电控装置(12)的工业控制计算机控制旋挖机械臂驱动和旋挖驱动动作使旋挖截割头根据需去除的已暴露地下空洞原始内表面模型的去除路径坐标移动依次对地下空洞的内表面进行旋挖去除部分地下空洞的内表面,至去除路径终点时完成地下空洞内表面的旋挖处理,地形探测及处理机器人单元(1)回退至初始位置;e.3D打印地下空间三维实体:3D打印控制回路开始工作,中央控制计算机发出指令使打印电控装置(23)的3D打印机器人行走控制回路开始工作,打印电控装置(23)的工业控制计算机依次根据表面支护层模型的打印路径和打印基准坐标、柱形支护模型的打印路径和打印基准坐标、墙板模型和楼板模型的打印路径和打印基准坐标控制3D打印机器人单元(2)的全地形行走底盘的电控驱动机构和转向控制机构动作使3D打印机器人单元(2)坐标移动至地下空洞内部对应地下空间三维模型坐标位置的设定位置,然后3D打印喷头位置控制回路开始工作,打印电控装置(23)的工业控制计算机根据打印路径控制打印机械臂(21)的打印机械臂驱动动作使3D打印喷头(24)坐标移动至打印基准坐标位置,打印材料泵入机构控制回路开始工作,打印电控装置(23)的工业控制计算机控制打印材料输入装置(22)的打印材料泵入机构动作使泵出的打印材料经3D打印喷头(24)输出,然后打印电控装置(23)的工业控制计算机控制打印机械臂(21)的打印机械臂驱动动作使3D打印喷头(24)根据打印路径坐标移动依次进行表面支护层模型、柱形支护模型、墙板模型和楼板模型的3D打印,至打印路径终点时完成地下空间三维模型的实体打印,3D打印机器人单元(2)回退至初始位置。2.根据权利要求1所述的地下空间构建方法,其特征在于,步骤b地形探测及处理机器人单元(1)向地下空洞内部步进并对地下空洞的内腔进行扫描的过程中,中央控制计算机首先发出指令使车载电控装置(12)的探测头探测角度控制回路开始工作,车载电控装置(12)的工业控制计算机控制探测头(13)的探测头角度定位控制驱动动作使探测头(13)的扫描仪在基点扫描平面内360°范围内旋转进行以初始位置为参照坐标原点的基点平面扫描,探测头(13)的扫描仪同时将该基点平面扫描数据发送至中央控制计算机、同时探测头(13)的陀螺仪将参照坐标原点位置的扫描仪坐标位置数据发送至中央控制计算机,中央控制计算机将基点平面扫描数据和参照坐标原点位置的扫描仪坐标位置数据进行存储;然后中央控制计算机发出指令使车载电控装置(12)的探测机器人行走控制回路开始工作,车载电控装置(12)的工业控制计算机控制地形探测及处理机器人单元(1)的全地形行走...

【专利技术属性】
技术研发人员:马占国王东飞龚鹏郭和平刘飞高峰杨宝智张帆马云靖上官建华
申请(专利权)人:中国矿业大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1