一种毫米波宽带高效率晶体管堆叠功率放大器制造技术

技术编号:19150351 阅读:39 留言:0更新日期:2018-10-13 10:23
本发明专利技术公开了一种毫米波宽带高效率晶体管堆叠功率放大器,包括输入匹配网络、第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络、自偏分压网络和输出匹配网络。本发明专利技术采用栅源反馈堆叠放大网络,遏制了传统晶体管堆叠结构放大器在毫米波出现的不稳定现象,使得栅源反馈堆叠放大器可以实现良好的功率和效率匹配,同时还可以兼顾阻抗匹配,具有效率高、输出功率高、功率增益高、面积小等优点。

Millimeter wave broadband high-efficiency transistor stacked power amplifier

The invention discloses a millimeter wave broadband high efficiency transistor stacked power amplifier, which comprises an input matching network, a first gate source feedback stacked amplifier network, a second gate source feedback stacked amplifier network, a self bias voltage divider network and an output matching network. The invention adopts a gate-source feedback stacked amplifier network, which prevents the instability of the traditional transistor stacked amplifier in millimeter wave, and enables the gate-source feedback stacked amplifier to achieve good power and efficiency matching, and at the same time can take into account impedance matching, thus having high efficiency, high output power and high power gain. Small area and so on.

【技术实现步骤摘要】
一种毫米波宽带高效率晶体管堆叠功率放大器
本专利技术属于场效应晶体管射频功率放大器和集成电路
,具体涉及一种毫米波宽带高效率晶体管堆叠功率放大器的设计。
技术介绍
随着宽带数字传输、高速卫星通信等需求的卫星通信市场的快速发展,射频前端收发器也要求随之向高集成、低功耗、结构紧凑、价格低廉的方向发展。射频与微波功率放大器作为发射机的重要模块,是整个发射机中耗能最多的电路,其输出功率要求比较高,当采用集成电路工艺设计实现射频与微波功率放大器芯片电路时,其性能和成本受到了一定制约,主要体现在以下几方面:(1)高功率高效率放大能力受限:随着半导体工艺的发展和晶体管尺寸等比例缩小的趋势,晶体管的栅长越来越短,导致了击穿电压的降低和膝点电压的升高,从而限制了晶体管漏极输出电压摆幅,进而限制了单一晶体管的功率容量,同时受到寄生参数的影响,毫米波的晶体管增益也大大受限。(2)低成本高功率放大能力受限:随着第三代半导体工艺的发展,传统的GaAs工艺保持低成本优势的同时,也需要迫切地提升功率输出能力;而第三代半导体GaN芯片在毫米波的应用越来越广,也需要迫切地降低成本。目前,常见的宽带高效率、高功率的放大器的电路结构有很多,要想同时满足各项参数的要求十分困难,通常,其高功率指标必然带来效率指标的恶化,同时增加功耗或芯片面积等为代价来获得的。由此可以看出,基于集成电路工艺的毫米波宽带高效率、高功率放大器的设计难点为:(1)毫米波超宽带高功率输出难度较大;(2)毫米波高功率增益难度较大;(3)毫米波传统方法设计的芯片面积较大。
技术实现思路
本专利技术的目的是提出一种毫米波宽带高效率晶体管堆叠功率放大器,具有高功率输出能力、高功率增益、良好的输入输出匹配特性、芯片面积小且成本低等优点。本专利技术的技术方案为:一种毫米波宽带高效率晶体管堆叠功率放大器,包括输入匹配网络、第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络、自偏分压网络和输出匹配网络;输入匹配网络的输入端为整个功率放大器的输入端,其第一输出端与第一栅源反馈堆叠放大网络的输入端连接,其第二输出端与第二栅源反馈堆叠放大网络的输入端连接;输出匹配网络的输出端为整个功率放大器的输出端,其第一输入端与第一栅源反馈堆叠放大网络的输出端连接,其第二输入端与第二栅源反馈堆叠放大网络的输出端连接;自偏分压网络分别与第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络以及输出匹配网络连接。其中,第一栅源反馈堆叠放大网络和第二栅源反馈堆叠放大网络为有源放大网络,输入匹配网络、输出匹配网络和自偏分压网络为无源网络。本专利技术的有益效果是:本专利技术采用栅源反馈堆叠放大网络,遏制了传统晶体管堆叠结构放大器在毫米波出现的不稳定现象,使得栅源反馈堆叠放大器可以实现良好的功率和效率匹配,同时还可以兼顾阻抗匹配,此外保留了堆叠结构放大器的优势,如节省芯片面积,实现良好的宽带功率输出能力和功率增益能力,避免了集成电路工艺的低击穿电压特性,提高电路的稳定性与可靠性。进一步地,输入匹配网络包括依次串联的隔直电容C1、微带线TL1、微带线TL3、第一RC抑制电路以及微带线TL7,隔直电容C1的一端为输入匹配网络的输入端;微带线TL1和微带线TL3的连接节点上还连接有开路微带线TL2;第一RC抑制电路和微带线TL7的连接节点还与微带线TL4的一端连接,微带线TL4的另一端分别与电阻R3的一端以及第二RC抑制电路连接,电阻R3的另一端与低压偏置电源Vg1连接;微带线TL7的另一端分别与微带线TL6的一端以及微带线TL5的一端连接,微带线TL6的另一端为输入匹配网络的第一输出端,微带线TL5的另一端为输入匹配网络的第二输出端;第一RC抑制电路包括并联的电阻R1和电容C2,第二RC抑制电路包括串联的电阻R2和接地电容C3。上述进一步方案的有益效果是:本专利技术采用的输入匹配网络除了能对射频输入信号进行阻抗匹配以及等功率分配以外,还能实现信号自激抑制功能从而提高电路的稳定性,其中第一RC抑制电路主要实现对晶体管的潜在低频不稳定信号进行抑制,第二RC抑制电路主要实现对电源自激不稳定信号进行抑制。进一步地,第一栅源反馈堆叠放大网络和第二栅源反馈堆叠放大网络结构相同,均包括按照源极-漏极相连堆叠构成的顶层晶体管、中间层晶体管以及底层晶体管;底层晶体管的源极均接地,其栅极为第一栅源反馈堆叠放大网络或第二栅源反馈堆叠放大网络的输入端;中间层晶体管的栅极分别与自偏分压网络以及一路栅极补偿电路连接,其栅极和源极之间通过串联的电容和微带线连接;顶层晶体管的栅极分别与自偏分压网络以及一路栅极补偿电路连接,其栅极和源极之间通过串联的电容和微带线连接,其漏极为第一栅源反馈堆叠放大网络或第二栅源反馈堆叠放大网络的输出端;底层晶体管的漏极和中间层晶体管的源极之间,以及中间层晶体管的漏极和顶层晶体管的源极之间均连接有L型匹配枝节;栅极补偿电路包括串联的栅极稳定电阻和补偿接地电容,L型匹配枝节包括串联在两个相邻晶体管的漏极和源极之间微带线以及并联在该微带线和晶体管漏极之间的开路微带线。上述进一步方案的有益效果是:本专利技术采用的栅源反馈堆叠放大网络,与常规堆叠放大网络相比,采用了栅源反馈回路,遏制了传统晶体管堆叠结构放大器在毫米波出现的不稳定现象,使得栅源反馈堆叠放大器可以实现良好的功率和效率匹配,同时还可以兼顾阻抗匹配;同时在晶体管堆叠结构的漏极和源极连接中加入了具有一定长度的L型匹配枝节,强化了堆叠结构在毫米波实现堆叠晶体管间的阻抗匹配,而常规堆叠放大网络采用的是较短的微带线连接。进一步地,输出匹配网络包括依次串联的隔直电容C13、微带线TL32、微带线TL29以及微带线TL26,隔直电容C13的一端为输出匹配网络的输出端;微带线TL32和微带线TL29的连接节点上还连接有开路微带线TL30和开路微带线TL31,微带线TL29和微带线TL26的连接节点上还连接有开路微带线TL27和开路微带线TL28,微带线TL26的另一端分别与微带线TL22的一端、微带线TL23的一端以及自偏分压网络连接;微带线TL22的另一端与微带线TL20的一端连接,微带线TL20的另一端为输出匹配网络的第一输入端,微带线TL22和微带线TL20的连接节点还与微带线TL21的一端连接,微带线TL21的另一端分别与第三RC抑制电路以及第一高压偏置电源Vd1连接;微带线TL23的另一端与微带线TL24的一端连接,微带线TL24的另一端为输出匹配网络的第二输入端,微带线TL23和微带线TL24的连接节点还与微带线TL25的一端连接,微带线TL25的另一端分别与第四RC抑制电路以及第二高压偏置电源Vd2连接;第三RC抑制电路包括串联的电阻R15和接地电容C12,第四RC抑制电路包括串联的电阻R16和接地电容C14。上述进一步方案的有益效果是:本专利技术采用的输出匹配网络对两路放大网络的输出信号进行等功率合成,并采用三级电抗匹配网络对合成信号进行匹配,此外其中的第三RC抑制电路和第四RC抑制电路还能实现对电源自激不稳定信号进行抑制。进一步地,自偏分压网络包括电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13和电阻R14;电阻R8的一端接地,其另一端分别与电阻R9的一端、电阻R10的本文档来自技高网...

【技术保护点】
1.一种毫米波宽带高效率晶体管堆叠功率放大器,其特征在于,包括输入匹配网络、第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络、自偏分压网络和输出匹配网络;所述输入匹配网络的输入端为整个所述功率放大器的输入端,其第一输出端与第一栅源反馈堆叠放大网络的输入端连接,其第二输出端与第二栅源反馈堆叠放大网络的输入端连接;所述输出匹配网络的输出端为整个所述功率放大器的输出端,其第一输入端与第一栅源反馈堆叠放大网络的输出端连接,其第二输入端与第二栅源反馈堆叠放大网络的输出端连接;所述自偏分压网络分别与第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络以及输出匹配网络连接。

【技术特征摘要】
1.一种毫米波宽带高效率晶体管堆叠功率放大器,其特征在于,包括输入匹配网络、第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络、自偏分压网络和输出匹配网络;所述输入匹配网络的输入端为整个所述功率放大器的输入端,其第一输出端与第一栅源反馈堆叠放大网络的输入端连接,其第二输出端与第二栅源反馈堆叠放大网络的输入端连接;所述输出匹配网络的输出端为整个所述功率放大器的输出端,其第一输入端与第一栅源反馈堆叠放大网络的输出端连接,其第二输入端与第二栅源反馈堆叠放大网络的输出端连接;所述自偏分压网络分别与第一栅源反馈堆叠放大网络、第二栅源反馈堆叠放大网络以及输出匹配网络连接。2.根据权利要求1所述的毫米波宽带高效率晶体管堆叠功率放大器,其特征在于,所述输入匹配网络包括依次串联的隔直电容C1、微带线TL1、微带线TL3、第一RC抑制电路以及微带线TL7,所述隔直电容C1的一端为所述输入匹配网络的输入端;所述微带线TL1和微带线TL3的连接节点上还连接有开路微带线TL2;所述第一RC抑制电路和微带线TL7的连接节点还与微带线TL4的一端连接,所述微带线TL4的另一端分别与电阻R3的一端以及第二RC抑制电路连接,所述电阻R3的另一端与低压偏置电源Vg1连接;所述微带线TL7的另一端分别与微带线TL6的一端以及微带线TL5的一端连接,所述微带线TL6的另一端为所述输入匹配网络的第一输出端,所述微带线TL5的另一端为所述输入匹配网络的第二输出端;所述第一RC抑制电路包括并联的电阻R1和电容C2,所述第二RC抑制电路包括串联的电阻R2和接地电容C3。3.根据权利要求1所述的毫米波宽带高效率晶体管堆叠功率放大器,其特征在于,所述第一栅源反馈堆叠放大网络和第二栅源反馈堆叠放大网络结构相同,均包括按照源极-漏极相连堆叠构成的顶层晶体管、中间层晶体管以及底层晶体管;所述底层晶体管的源极均接地,其栅极为第一栅源反馈堆叠放大网络或第二栅源反馈堆叠放大网络的输入端;所述中间层晶体管的栅极分别与自偏分压网络以及一路栅极补偿电路连接,其栅极和源极之间通过串联的电容和微带线连接;所述顶层晶体管的栅极分别与自偏分压网络以及一路栅极补偿电路连接,其栅极和源极之间通过串联的电容和微带线连接,其漏极为第一栅源反馈堆叠放大网络或第二栅源反馈堆叠放大网络的输出端;所述底层晶体管的漏极和中间层晶体管的源极之间,以及中间层晶体管的漏极和顶层晶体管的源极之间均连接有L型匹配枝节;所述栅极补偿电路包括串联的栅极稳定电阻和补偿接地电容,所述L型匹配枝节包括串联在两个相邻...

【专利技术属性】
技术研发人员:邬海峰滑育楠陈依军胡柳林吕继平童伟王测天
申请(专利权)人:成都嘉纳海威科技有限责任公司
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1