氢燃料电池层间裂缝多属性重构方法技术

技术编号:18947246 阅读:41 留言:0更新日期:2018-09-15 12:32
本发明专利技术涉及氢燃料电池技术领域,具体为氢燃料电池层间裂缝多属性重构方法,使用CT扫描方法构建层间裂缝几何结构模型,利用EDS方法对裂缝表面进行元素扫描,建立裂缝表面组分模型,然后将几何结构模型和组分模型匹配在一起,构建层间裂缝多属性模型。本发明专利技术提供的氢燃料电池层间裂缝多属性重构方法,通过在裂缝面上钻取非对称孔,并喷涂钛金属,可以将CT扫描得到的层间裂缝面的几何结构数据和EDS扫描得到的组分分布数据空间的位置匹配起来,从而实现CT扫描和EDS扫描的联合分析,不仅能够分析层间裂缝的几何结构,还能给出相应位置点的组分信息。

Multi attribute reconstruction method for interlayer cracks in hydrogen fuel cells

The invention relates to the technical field of hydrogen fuel cell, in particular to a multi-attribute reconstruction method for interlayer cracks of hydrogen fuel cell. The geometric structure model of interlayer cracks is constructed by CT scanning method, the element scanning of crack surface is performed by EDS method, and the component model of crack surface is established. Then the geometric structure model and the component model are matched in the geometric structure model and the component model. A multi-attribute model of interlayer cracks is constructed. By drilling asymmetrical holes on the crack surface and spraying titanium metal, the multi-attribute reconstruction method of the interlayer crack of the hydrogen fuel cell provided by the invention can match the geometric structure data of the interlayer crack surface obtained by CT scanning with the position of the component distribution data space obtained by EDS scanning, thereby realizing the CT scanning and EDS scanning. Joint analysis can not only analyze the geometric structure of interlayer cracks, but also give the component information of corresponding positions.

【技术实现步骤摘要】
氢燃料电池层间裂缝多属性重构方法
本专利技术涉及氢燃料电池
,具体为氢燃料电池层间裂缝多属性重构方法。
技术介绍
氢燃料电池是一种以氢气为输入燃料,基于氧化还原原理,构建的化学电池。氢燃料电池相比于锂电池,其能量密度更高、能量补充速度更快、寿命周期更长、废电池对环境的二次污染更小,是新能源汽车的动力电池类型之一。图1是氢燃料电池结构示意图,膜电极为薄膜状结构,膜电极有2个面,其中靠近阳极的一面为膜电极P面,靠近阴极的一面为膜电极N面;阳极扩散层靠近膜电极的一面为阳极扩散层的M面,阳极扩散层靠近集流板的一面为阳极扩散层的C面;阴极扩散层靠近膜电极的一面为阴极扩散层的M面,阴极扩散层靠近集流板的一面为阴极扩散层的C面。氢燃料电池由膜电极(电解质层和催化层)、扩散层和集流板构成,其中集流板上有协助输运氢气和氧气的导流槽。氢燃料电池运作过程如下:首先通过导流槽向燃料电池加注氢气,然后氢气通过扩散层进入催化层,之后氢气进入催化层,而后氢气在催化层作用下分解为氢离子和一个电子,然后氢离子在化学势驱动下穿过电解质层,而电子则通过外电路传输,氢离子到达阴极催化层后在催化剂作用下与氧气发生反应,并生成水,最后水在扩散层协助下通过导流槽排除。通常燃料电池膜电极和扩散层之间靠应力紧密贴合在一起,然而随着燃料电池的使用,在热应力、外部应力破坏条件下,膜电极和扩散层之间会出现层间裂缝。层间裂缝的出现对燃料电池具有不良影响:首先层间裂缝导致膜电极和扩散层接触不良,增加了燃料电池的内阻;其次层间缝会蓄存反应生成水,在膜电极和扩散层之间形成一道“水墙”,阻挡了氧气的通道,降低了燃料电池的性能。层间裂缝对燃料电池中水和氧气的输运具有重要影响。为了分析燃料电池的抗热应力和机械应力性能,需要分析抗热应力和机械应力引起的层间裂缝对燃料电池性能的影响。为了模拟分析层间缝对水、氧流动的具体影响,需要构建层间缝的结构模型,同时需要给出层间缝表面组分分布。裂缝由2个面相夹而成,而燃料电池层间缝一侧为膜电极,另外一侧为扩散层。扩散层通常包含亲水性的碳纤维材料和疏水性的四氟乙烯材料,因此要分析层间裂缝中水、氧气的输运特征,不仅要建立层间裂缝的几何结构模型,同时要构建层间裂缝的表面组分模型(组分指表面化学成分分布),以便分析润湿性对流动的影响。但是目前尚无针对燃料电池层间缝的重构方法。目前针对岩石中裂缝的重构方法,无法分析燃料电池层间裂缝的表面组分分布。
技术实现思路
针对上述技术问题,为了重构燃料电池层间裂缝几何结构和组分分布双重属性模型,本专利技术提供氢燃料电池层间裂缝多属性重构方法,采用CT扫描和EDX元素分析方法,构建燃料电池层间裂缝模型。采用的技术方案为:氢燃料电池层间裂缝多属性重构方法,包括以下过程:使用CT扫描方法构建层间裂缝几何结构模型,利用EDS方法对裂缝表面进行元素扫描,建立裂缝表面组分模型,然后将几何结构模型和组分模型匹配在一起,构建层间裂缝多属性模型。具体步骤如下:1.制作膜电极定位孔在厚度为200微米、边长为10毫米的正方形膜电极P面和N面各覆盖一层厚度为10微米、边长为10毫米的正方形的金箔,然后利用聚焦离子束,在两面各钻取5个深度为20微米、直径为20微米的圆柱形的膜电极定位孔,5个膜电极定位孔呈非对称分布;2.膜电极定位孔喷金属钛向覆盖金箔的膜电极P面和N面分别喷涂钛金属颗粒;所喷涂的钛金属颗粒直径为50纳米;喷涂完成后,揭去膜电极两面的金箔,此时膜电极P面和N面的膜电极定位孔内含有高密度、抗腐蚀的钛金属;3.扩散层定位孔在厚度为1000微米、长为12毫米、宽为10毫米的正方形阳极扩散层的M面、阴极扩散层的M面,各覆盖一层厚度为10微米、边长为10毫米的正方形的金箔,然后利用聚焦离子束钻取5个深度为20微米、直径为20微米的圆柱形的扩散层定位孔;4.扩散层定位孔喷金属钛向覆盖了金箔的阳极扩散层的M面、阴极扩散层的M面分别喷涂钛金属颗粒,所喷涂的钛金属颗粒直径为50纳米;喷涂完成后,揭去扩散层表面的金箔,此时扩散层定位孔内含有高密度、抗腐蚀的钛金属;5.燃料电池组装将步骤1-4制作的膜电极、扩散层,合并在一起,膜电极P面朝向阳极扩散层M面,膜电极N面朝向阴极扩散层M面,阳极扩散层、阴极扩散层的另外一侧分别设有厚度为5毫米、边长为10毫米的正方形集流板并固定,然后在靠近阳极扩散层的集流板外侧上喷涂一层厚度为100微米的金属钛,完成测试用燃料电池组装。6.层间裂缝制备阳极扩散层和阴极扩散层比膜电极多出的2毫米为延伸边,两个延伸边分别在相对的一端延伸出去,将阴极扩散层的延伸边固定住,从而施加固定边界条件;在阳极扩散层的延伸边施加应变边界条件,阴极扩散层和阳极扩散层边界条件共同产生剪切应变效应;不断增加应变量,直到膜电极和阳极扩散层之间出现层间裂缝位置。完成层间裂缝制备;7.层间裂缝几何结构重构对含层间裂缝的燃料电池进行CT扫描,得到燃料电池三维CT灰度数据体;以集流板中导流槽的灰度DGr为阈值,将燃料电池扩散层和膜电极三维CT灰度数据体中灰度小于DGr的区域划定为层间裂缝,建立层间裂缝几何结构模型;同时根据步骤5中在集流板上喷涂的金属钛所对应的三维CT的灰度,确定金属钛的灰度数值TGr;在三维CT数据体中分割灰度为TGr的区域,确定定位孔的位置。8.层间裂缝表面组分扫描将已经产生层间裂缝的燃料电池的膜电极、扩散层取出,多膜电极的P面和N面、扩散层的M面进行能谱扫描(EDS),确定膜电极、扩散层表面碳元素(C)、氢元素(H)、钛元素(Ti)、催化用金属元素(Pt)的含量和分布,建立层间裂缝表面组分分布数据;在裂缝组分分布数据中可以根据钛元素的含量,确定定位孔的位置。9.层间裂缝几何结构和表面组分匹配几何结构和表面组分匹配在膜电极P面、膜电极N面、阳极扩散层M面、阴极扩散层M面4个面上分别进行;在4个面几何结构模型、表面组分分布数据中找到定位孔,然后在几何结构表面对应位置处,标注相应位置处的组分数据,实现层间裂缝几何结构和组分分布多属性重构。本专利技术提供的氢燃料电池层间裂缝多属性重构方法,通过在裂缝面上钻取非对称孔,并喷涂钛金属,可以将CT扫描得到的层间裂缝面的几何结构数据和EDS扫描得到的组分分布数据空间的位置匹配起来,从而实现CT扫描和EDS扫描的联合分析,不仅能够分析层间裂缝的几何结构,还能给出相应位置点的组分信息。附图说明图1是氢燃料电池结构示意图;图2是实施例中钻取非对称标记孔示意图;图3是实施例中测试燃料电池组装示意图。具体实施方式结合附图说明本专利技术的具体实施方式。氢燃料电池层间裂缝多属性重构方法,包括以下步骤:1.制作膜电极定位孔在厚度为200微米、边长为10毫米的正方形膜电极P面和N面各覆盖一层厚度为10微米、边长为10毫米的正方形的金箔,然后利用聚焦离子束,在两面各钻取5个深度为20微米、直径为20微米的圆柱形的膜电极定位孔,5个膜电极定位孔呈非对称分布;如图2所示,5个膜电极定位孔分别为A、B、C、D、E。在正方形样品实验过程中,样品可能随机出现90度或者180度旋转,而非对称排布定位孔上下、左右均不对称,因此可以帮助确定样品是否发生了90度或者180度旋转。2.膜电极定位孔喷金属钛向覆盖金箔的膜电极P面和N本文档来自技高网
...

【技术保护点】
1.氢燃料电池层间裂缝多属性重构方法,其特征在于,包括以下步骤:使用CT扫描方法构建层间裂缝几何结构模型,利用EDS方法对裂缝表面进行元素扫描,建立裂缝表面组分模型,然后将几何结构模型和组分模型匹配在一起,构建层间裂缝多属性模型。

【技术特征摘要】
1.氢燃料电池层间裂缝多属性重构方法,其特征在于,包括以下步骤:使用CT扫描方法构建层间裂缝几何结构模型,利用EDS方法对裂缝表面进行元素扫描,建立裂缝表面组分模型,然后将几何结构模型和组分模型匹配在一起,构建层间裂缝多属性模型。2.根据权利要求1所述的氢燃料电池层间裂缝多属性重构方法,其特征在于,包括以下步骤:(1)制作膜电极定位孔在厚度为200微米、边长为10毫米的正方形膜电极P面和N面各覆盖一层厚度为10微米、边长为10毫米的正方形的金箔,然后利用聚焦离子束,在两面各钻取5个深度为20微米、直径为20微米的圆柱形的膜电极定位孔,5个膜电极定位孔呈非对称分布;(2)膜电极定位孔喷金属钛向覆盖金箔的膜电极P面和N面分别喷涂钛金属颗粒;所喷涂的钛金属颗粒直径为50纳米;喷涂完成后,揭去膜电极两面的金箔,此时膜电极P面和N面的膜电极定位孔内含有高密度、抗腐蚀的钛金属;(3)扩散层定位孔在厚度为1000微米、长为12毫米、宽为10毫米的正方形阳极扩散层的M面、阴极扩散层的M面,各覆盖一层厚度为10微米、边长为10毫米的正方形的金箔,然后利用聚焦离子束钻取5个深度为20微米、直径为20微米的圆柱形的扩散层定位孔;(4)扩散层定位孔喷金属钛向覆盖了金箔的阳极扩散层的M面、阴极扩散层的M面分别喷涂钛金属颗粒,所喷涂的钛金属颗粒直径为50纳米;喷涂完成后,揭去扩散层表面的金箔,此时扩散层定位孔内含有高密度、抗腐蚀的钛金属;(5)燃料电池组装将步骤(1)-(4)制作的膜电极、扩散层,合并在一起,膜电极P面朝向阳极扩散层M面,膜电极N面朝向阴极扩散层M面,阳极扩散层、阴极扩散层的另外一侧分别设有厚度为5毫米、边长为10毫米...

【专利技术属性】
技术研发人员:马慧芳郭文跃赵联明朱后禹唐明明
申请(专利权)人:中国石油大学华东
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1