一种室温纳米线光子数可分辨探测器及制备方法技术

技术编号:18401850 阅读:39 留言:0更新日期:2018-07-08 21:03
本发明专利技术公开了一种室温纳米线光子数可分辨探测器及制备方法。其特征在于,器件结构自下而上依次为是衬底、氧化物层、纳米线半导体和金属源漏电极。器件制备步骤是将CVD生长的具有丰富表面态纳米线转移到衬底上,运用紫外光刻或电子束光刻的方法结合传统剥离工艺制备金属电极作为源极和漏极,形成纳米线半导体场效应晶体管结构。器件首先需要在源极和栅极间施加负向栅压,使得场效应晶体管达到跨导最大处,通过纳米线的丰富表面态可以长时间俘获光生空穴,形成光栅效应,使得电流信号发生跳变,进而实现可分辨光子数探测。该光子探测器具有室温工作、光子数可分辨、高灵敏、响应快、稳定性好及低功耗等特点。

A photon number discrimination detector for room temperature nanowires and its preparation method

The invention discloses a photon counting resolvable detector for room temperature nanowires and a preparation method thereof. The device is characterized by a substrate structure, an oxide layer, a nanowire semiconductor and a metal source drain electrode. The device is prepared by transferring the rich surface nanowires of CVD to the substrate. The metal electrodes are prepared by UV photolithography or electron beam lithography to prepare the metal electrodes as source and drain, and the nanowire semiconductor field effect transistor is formed. The device first needs to apply negative gate pressure between the source and gate, which makes the field effect transistor reach the largest transconductance. Through the rich surface state of the nanowires, the optical hole can be captured for a long time, forming the grating effect, making the current signal hopping and thus realizing the detectability of the distinguished number of light. The photon detector has the characteristics of room temperature operation, photon number resolution, high sensitivity, fast response, good stability and low power consumption.

【技术实现步骤摘要】
一种室温纳米线光子数可分辨探测器及制备方法
本专利技术涉及一种纳米线半导体光电探测器件,具体指一种室温纳米线光子数可分辨探测器及制备方法。
技术介绍
单光子探测器依靠其极为灵敏的探测能力来记录光子—这一基本量子体系,它在在高分辨率的光谱测量、非破坏性物质分析、高速现象检测、精密分析、大气测污、生物发光、放射探测、高能物理、天文测光、光时域反射、量子密钥分发系统等领域有着广泛的应用。然而,其一,传统单光子探测器,比如光电倍增管、雪崩光电二极管和超导单光子探测器要么需要盖格模式的百伏驱动电压,要么需要极低温的工作条件,使得它们的操作相对复杂。其二,单光子探测器拥有光子数分辨能力的也只是屈指可数,其三,大部分单光子探测器需要分子束外延这样的高要求生长条件,给器件制备过程带来困难。因此,迫切需要研究一种独特的器件结构同时具有光子数分辨能力,易于制造(成本低廉)且可以在室温下工作(操作简单,节约能源)来满足单光子探测器在现代科学和工程的各个领域的应用。一维半导体纳米线由于具有特殊的光、电、磁等物理化学性能及纳米结构的奇特性能,引起了科学家们的广泛关注,被公认为是发展下一代纳米光电器件和集成系统的基础,成为当今纳米材料研究领域的前沿。硫化镉(CdS)作为一种重要的直接带隙II-VI族化合物半导体材料,常温下禁带宽度为2.4eV,其具备半导体、光电、热电、压电、气敏和透明导电等特性,作为光电子器件可以在纳米激光器、发光二极管、光纤通讯、高速电子器件、光电子器件、生物传感器、光电探测器和通讯卫星以及太阳能电池等诸多
有着广阔的应用价值。虽然已有一些新型低温光子数可分辨探测器已被制备出来[NaturePhotonics1,585(2007)],但在室温下的光子数可分辨易制造的探测器还没有出现。为了解决上述单光子探测器目前遇到的问题,本专利技术提出了一种室温纳米线可分辨光子数探测的方法。该方法是基于化学气相沉积(CVD)生长的硫化镉(CdS)制作场效应晶体管,由于CVD生长的CdS具有丰富的表面态、大的比表面积和高载流子迁移率,这三个性质可以一起助于纳米线在室温下响应一个光子且被探测到,其中表面态类似于量子点的作用,具有光栅(photongating)效应。
技术实现思路
本专利技术提出了一种室温纳米线光子数可分辨探测器及制备方法,实现了纳米线半导体场效应结构在室温光子探测领域的应用。上述专利技术将纳米线及其光栅效应引入单光子探测结构,该探测器结构基于场效应晶体管,在室温下利用纳米线表面态俘获光生空穴,引起光栅效应,从而引起电流跳变,可实现器件的高灵敏、低功耗,光子数可分辨探测。本专利技术指一种室温纳米线光子数可分辨探测器及制备方法,其特征在于,器件结构自下而上依次为:-衬底1,-氧化物层2、-纳米线半导体3、-金属源极4、金属漏极5,其中衬底1为重掺杂的Si衬底,厚度0.3-0.5毫米;其中氧化物层2为SiO2,厚度110±10纳米;其中纳米线半导体3为CdS纳米线,且CdS纳米线表面具有丰富的表面态。沟道长度从0.1微米到5微米,直径从30纳米到300纳米;其中金属源极4、金属漏极5为Cr和Au电极,下层Cr厚度为5-15纳米,上层Au厚度为45-75纳米。本专利技术指一种室温纳米线光子数可分辨探测器及制备方法,其特征在于器件制备包括以下步骤:1)氧化物层制备在重掺杂Si衬底上通过热氧化法制备氧化物层二氧化硅,厚度为110纳米。2)纳米线半导体制备及转移利用Au催化剂,采用化学气相沉积方法在Si衬底上生长制备CdS纳米线,使CdS纳米线表面具有丰富的表面态。随后采用物理转移方法将CdS纳米线半导体(3)转移至氧化物层(2)表面。3)纳米线半导体源漏电极的制备采用紫外光刻技术或者电子束曝光技术,结合热蒸发及传统剥离工艺在制备金属源极(4),漏极(5),形成背栅结构纳米线半导体场效应结构器件;电极为铬、金,厚度分别为5-15纳米,45-75纳米。在源极和栅极之间施加负向偏压,使晶体管工作在跨导最大处附近。根据高斯定理,此举对后续测量的光生电流能起到最大放大作用,同时负向偏压可以抑制一部分背景载流子。在器件工作时,源极漏极间通入微小恒定电压,检测电极两端电流。器件工作的状态示意图如图2所示。将入射光衰减到只有几个光子能到达器件时,且入射光子的能量大于纳米线的禁带宽度,产生光生电子空穴。空穴在负向偏压的作用下被引导到纳米线表面态中,且被长时间俘获,电子留在纳米线沟道中。被俘获的空穴一方面可以屏蔽一部分栅极电压,使得沟道电流有一定的回升,另一方面,被俘获的空穴可以通过电容耦合作用使得纳米线中的电子浓度增多,再一次使得沟道电流增大。这两个作用协同进行,在检测源漏电极两端的电流中可以观察到明显的跳变信号。纳米线半导体光子数可分辨探测器在不同状态下的响应图如图3所示。本专利技术专利的优点在于:本专利技术基于场效应结构,在源极和栅极之间的负向偏压下,利用纳米线的表面态能有效地长时间俘获光生空穴,从而引起光栅效应且屏蔽负向偏压,使得一个光子所引起的电流改变能被检测到。此外,器件还具有室温工作、光子数可分辨、高灵敏、响应快、稳定性好、低功耗等特点。附图说明图1为纳米线半导体可分辨光子数探测器结构三维示意图。图中:1衬底、2氧化物层、3纳米线半导体、4金属源极、5金属漏极。图2纳米线半导体可分辨光子数探测器截面工作状态示意图。图3纳米线半导体光子数可分辨探测器其中的纳米线在利用光栅效应响应一个光子前后工作示意图,(a)响应前,(b)响应后。具体实施方式下面结合附图对本专利技术的具体实施方式作详细说明:本专利技术研制了纳米线半导体光子数可分辨探测器。通过基于场效应结构,在源极和栅极之间的负向偏压下,利用纳米线的表面态能有效地长时间俘获光生空穴,从而引起光栅效应且屏蔽负向偏压,使得一个光子所引起地电流改变能被检测到。从而显著提高了单光子探测器在在室温工作,光子数可分辨和易于制备的集成性能。具体步骤如下:1.衬底选择选用厚度0.5毫米的重掺杂p型硅做为衬底。2.氧化物介质层制备通过热氧化发在硅衬底表面,氧化110纳米厚度二氧化硅。3.纳米线半导体转移制备用CVD方法生长CdS纳米线,使CdS纳米线表面具有丰富的表面态。随后将其转移至SiO2/Si衬底上,CdS的长度8微米,直径100纳米。4.源极、漏极制备利用紫外光刻方法制备源极、漏极电极图形;利用热蒸发技术制备金属电极,铬15纳米,金65纳米;结合传统剥离方法,剥离金属膜,获得源极、漏极电极,沟道宽度为0.5微米。5.将制备好的纳米线半导体可分辨光子数探测器进行光子响应测试。对于不同的沟道长度(0.1微米到5微米)以及不同的纳米线直径(30纳米到300纳米)的可分辨光子数探测器,测试过程中均显示超高灵敏性,均具有光子分辨能力。a).沟道长度0.1微米,纳米线直径30纳米的可分辨光子数探测器在室温下,可以分辨出1到5个光子。b).沟道长度1微米,纳米线直径100纳米的可分辨光子数探测器在室温下,可以分辨出1到3个光子。c).沟道长度5微米,纳米线直径300纳米的可分辨光子数探测器在室温下,可以分辨出1到2个光子。在漏极和栅极间施加负向偏压3伏,使晶体管工作在跨导最大处附近,同时负向偏压可以抑制一部分背景载流子。器件工作本文档来自技高网
...

【技术保护点】
1.一种室温纳米线光子数可分辨探测器,包括衬底(1),氧化物层(2)、纳米线半导体(3)、金属源极(4)和金属漏极(5),其特征在于:所述的探测器结构自下而上依次为:衬底(1),氧化物层(2)、纳米线半导体(3)、金属源极(4)、金属漏极(5),其中:所述的衬底(1)为重掺杂的Si衬底;所述的氧化物层(2)为SiO2,厚度110±10纳米;所述的纳米线半导体(3)为CdS纳米线,沟道长度从0.1微米到5微米,直径从30纳米到300纳米;所述的金属源极(4)和金属漏极(5)为Cr和Au电极,下层Cr厚度为5‑15纳米,上层Au厚度为45‑75纳米。

【技术特征摘要】
2017.07.12 CN 20171056362861.一种室温纳米线光子数可分辨探测器,包括衬底(1),氧化物层(2)、纳米线半导体(3)、金属源极(4)和金属漏极(5),其特征在于:所述的探测器结构自下而上依次为:衬底(1),氧化物层(2)、纳米线半导体(3)、金属源极(4)、金属漏极(5),其中:所述的衬底(1)为重掺杂的Si衬底;所述的氧化物层(2)为SiO2,厚度110±10纳米;所述的纳米线半导体(3)为CdS纳米线,沟道长度从0.1微米到5微米,直径从30纳米到300纳米;所述的金属...

【专利技术属性】
技术研发人员:胡伟达骆文锦王鹏龙明生陈效双陆卫
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1