激光等离子体电子密度测量方法技术

技术编号:18241182 阅读:37 留言:0更新日期:2018-06-17 06:21
一种激光等离子体电子密度测量装置,包括驱动激光束、第一聚焦镜、激光器、扩束系统、第二聚焦镜、编码板、光斑探测器和计算机。驱动激光束被第一聚焦镜聚焦后与物质相互作用产生等离子体,激光器产生的激光束作为探测光对激光等离子体进行诊断,其通过扩束系统后穿过待测等离子体,待测光经过第二聚焦镜聚焦后照射到编码板上,用光斑探测器记录其所形成的衍射斑。利用这个衍射斑强度和迭代算法重构出待测光的相位分布。测出光经过待测等离子体后的相位变化,光程变化即可确定,用阿贝尔变换处理光程差的数据,从而获得电子密度的分布。本发明专利技术无需干涉光路,受环境影响较小,装置结构简单,测量分辨率高,满足于激光等离子体电子密度测量的要求。

Laser plasma electron density measuring device and measuring method

A laser plasma electronic density measuring device, including a driving laser beam, a first focus focusing mirror, a laser, a beam expanding system, a second focus lens, a coding plate, a spot detector and a computer. The laser beam is focused by the first focus lens and produces plasma with the interaction of the material. The laser beam produced by the laser is used to diagnose the laser plasma as the detecting light. The laser beam through the beam expansion system passes through the plasma to be measured, and the light is focused on the coding plate after second focus mirrors are focused, and is recorded with a spot detector. The diffraction spot is recorded. The intensity distribution and the iterative algorithm are used to reconstruct the phase distribution of photometry. When the phase changes after the plasma is measured, the light path change can be determined, and the Abel transform is used to deal with the data of the optical path difference, thus the distribution of the electron density is obtained. The invention does not need to interfere the optical path, is less affected by the environment, the device has simple structure, and the measuring resolution is high, which is satisfied with the requirement of the measurement of the electron density of the laser plasma. One

【技术实现步骤摘要】
激光等离子体电子密度测量装置及测量方法
本专利技术涉及激光与物质相互作用的等离子体电子密度测量
,具体是一种利用相位恢复算法实现激光等离子体电子密度测量装置及测量方法。技术背景高强度激光照射到金属表面时,会造成各种不同性质的损伤,同时在金属和空气界面激发等离子体。等离子体的光学探针诊断,是基于光在等离子体中传播时,如同在一种折射率连续变化的介质中传播,其折射率为(1-Ne/Nc)1/2,其中Ne是电子密度,Nc是该波长下的临界密度。测出光经过等离子体后的光程变化情况后,在假定等离子体密度为柱对称的情况下,可以用阿贝尔变换来处理光程差的数据,得到电子密度的分布。用于激光等离子体的光探针,要求其脉宽足够窄,与主脉冲的同步良好,波长合适,能够避开等离子体谐波的干扰等。现在广泛采用的干涉法在使用的方便性和准确度上有很多不足,比如:当用紫外和深紫外激光进行测量时,得到严格准确的参考光束较为困难;对环境的稳定度要求较高,不适应大型装置的现场检测,而且用脉冲激光进行干涉测量时需要进行光程匹配,测量机构的尺寸较大,进一步提高了环境稳定性要求;当用x射线诊断等离子体时,由于相应波段元件质量问题,干涉测量光路很难搭建。因此对于激光等离子体电子密度测量新方法的研究具有十分重要的意义。
技术实现思路
本专利技术针对上述激光等离子体电子密度测量的问题,提出一种利用相位恢复算法实现激光等离子体电子密度测量装置,利用一个光斑探测器记录两幅衍射光斑,由计算机进行迭代计算实现激光等离子体电子密度测量,该测量方法无需干涉光路,受环境影响较小,装置结构简单,测量分辨率高,满足于激光等离子体电子密度测量的要求。为解决上述问题,本专利技术的技术方案如下:一种激光等离子体电子密度测量装置,其特点在于:包括驱动激光束、第一聚焦镜、激光器、扩束系统、第二聚焦镜、编码板、光斑探测器和计算机;上述元件的位置关系如下:沿所述的驱动激光束的光路方向依次放置第一聚焦镜和作用物质,该作用物质位于所述的第一聚焦镜的焦点处,该驱动激光束经第一聚焦镜聚焦后与作用物质相互作用产生待测等离子体;沿所述的激光器的出射的相干光光束方向依次放置扩束系统、作用物质、第二聚焦镜、编码板和光斑探测器,激光器产生的激光束通过扩束系统后穿过待测等离子体后,经第二聚焦镜聚焦,并入射到所述的编码板,经该编码板调制后被所述的光斑探测器接收,该光斑探测器与计算机相连。所述的编码板垂直放置于聚焦光束的入射方向,确保激光器、扩束系统、第二聚焦镜和编码板与光束垂直且中心保持在光轴上,该编码板的空间分布已知,尺寸大小满足光路中光束全部通过。利用所述的激光等离子体电子密度测量装置测量待测激光等离子体的电子密度方法,其特点在于,该方法包括以下步骤:①以激光器发出的相干光光束为基准,确定光轴,沿光轴依次放置扩束系统、第二聚焦镜、编码板和光斑探测器;相干光光束经过扩束系统后光束口径增大,经第二聚焦镜汇聚后,经该编码板调制后被所述的光斑探测器接收,光斑探测器记录第一幅衍射光斑;所述的编码板垂直放置于聚焦光束的入射方向,确保各光学元件与光束垂直且中心保持在光轴上,该编码板的空间分布已知,尺寸大小满足光路中光束全部通过;②沿所述的驱动激光束的光路方向依次放置第一聚焦镜和作用物质,该作用物质位于所述的第一聚焦镜的焦点处;驱动激光束穿过第一聚焦镜后产生聚焦光束,聚焦光束与放置作用物质相互作用产生待测等离子体;③激光器发出的相干光光束经过扩束系统后光束口径增大,然后穿过产生的待测等离子体区域,经第二聚焦镜将穿过待测等离子体后的光束汇聚,经该编码板调制后被所述的光斑探测器接收,光斑探测器记录第二幅衍射光斑;④光斑探测器将第一幅衍射光斑和第二幅衍射光斑传输给计算机,由计算机处理获得相位变化空间分布。所述的步骤④,由计算机处理获得相位变化空间分布,具体步骤如下:步骤4.1测量参数值:用直尺测量第二聚焦镜到编码板的直线距离L0,第二聚焦镜焦点到编码板的直线距离L1,编码板到光斑探测器靶面的直线距离L2;步骤4.2给第二聚焦镜焦点处光波分布一初始的随机猜测值构造一个光阑,其孔径大小限制函数S1,初始光阑半径r1,当实际光阑半径在初始光阑半径r1范围以内,则函数S1取值为1,代表光透过光阑,当实际光阑半径在初始光阑半径r1范围以外,则函数S1取值为0,代表光不能透过光阑,初始第二聚焦镜焦点面上的光波分布为步骤4.3、第n次传播到编码板面上的照明光函数为表示第n次迭代光波focusn传播距离L1的过程,n代表第n次迭代;步骤4.4、在编码板面上,编码板的分布函数为P,第n次照明光通过编码板后的出射波函数为步骤4.5、第n次光斑探测器靶面上衍射光斑的复振幅分布表示第n次迭代光波exitn传播距离L2的过程;步骤4.6、光斑探测器实际记录的光斑分布为I,复振幅分布diffn和的误差步骤4.7、对光斑探测器靶面上的衍射光斑的复振幅分布进行更新,即将其振幅更新为光斑探测器实际记录光斑的振幅得到diff'n,ψn为diffn的相位分布;步骤4.8、反方向传播diff'n到编码板面上得到表示第n次迭代光波diff'n反方向传播距离L2的过程;步骤4.9、更新编码板面上的照明光函数illu'n=exit'n/P;步骤4.10、反方向传播illu'n到第二聚焦镜焦点面上得到表示第n次迭代光波illu'n反方向传播距离L1的过程;步骤4.11、增大光阑半径为rn+1,半径rn+1范围以内光阑孔径大小限制函数Sn+1取值为1,半径rn+1范围以外Sn+1函数取值为0,更新后的第二聚焦镜焦点面上的光波分布为focusn+1=focus'n*Sn+1作为第n+1次迭代的初始光波分布;步骤4.12重复步骤4.3到4.11,直至误差errorn变化非常小甚至不变时,迭代过程停止,此时更新后的编码板面上的照明光函数为illu;步骤4.13、光斑探测器记录的第一幅衍射光斑迭代计算获得的照明光函数为illuα,光斑探测器记录的第二幅衍射光斑迭代计算获得的照明光函数为illuβ;步骤4.14、由菲涅尔衍射积分公式,illuα和illuβ反方向传播到第二聚焦镜面上得到光场分布,公式如下:其中,λ是激光器发出的相干光波长,k为波矢,k=2π/λ,U(x′,y′)为驱动激光束没有与物质相互作用产生待测等离子体时第二聚焦镜面上的光场分布,T(x′,y′)为驱动激光束与物质相互作用产生待测等离子体时第二聚焦镜面上的光场分布;步骤4.15、计算两次光斑探测器分别记录的衍射光斑获得第二聚焦镜(6)面上光场分布的相位差U(x′,y′)T*(x′,y′),其中T*(x′,y′)为T(x′,y′)的共轭函数,即为由于驱动激光束与物质相互作用产生待测等离子体导致的相位变化;步骤4.16、测出光经过待测等离子体后的相位变化φ(x,y),其中dl为沿着激光器发出的激光光束在等离子体中传播方向路径的积分,ω是激光频率,c为真空中的光速,nc(ω)是对应的激光器发出激光的临界电子密度,与激光的波长有关,ne(x,y)为产生待测等离子体电子密度;激光器发出激光光束穿越待测等离子体时的光程变化情况即可以确定ΔS=∫(1-ηP)dl,ηp为激光光束在待测等离子体中传播的折射率;在假定等离子体密度为本文档来自技高网...
<a href="http://www.xjishu.com/zhuanli/61/201711350449.html" title="激光等离子体电子密度测量方法原文来自X技术">激光等离子体电子密度测量方法</a>

【技术保护点】
1.一种激光等离子体电子密度测量装置,其特征在于:包括驱动激光束(1)、第一聚焦

【技术特征摘要】
1.一种激光等离子体电子密度测量装置,其特征在于:包括驱动激光束(1)、第一聚焦镜(2)、激光器(4)、扩束系统(5)、第二聚焦镜(6)、编码板(7)、光斑探测器(8)和计算机(9);上述元件的位置关系如下:沿所述的驱动激光束(1)的光路方向依次放置第一聚焦镜(2)和作用物质,该作用物质位于所述的第一聚焦镜(2)的焦点处,该驱动激光束(1)经第一聚焦镜(2)聚焦后与作用物质相互作用产生待测等离子体(3);沿所述的激光器(4)的出射的相干光光束方向依次放置扩束系统(5)、作用物质、第二聚焦镜(6)、编码板(7)和光斑探测器(8),激光器(4)产生的激光束通过扩束系统(5)后穿过待测等离子体(3)后,经第二聚焦镜(6)聚焦,并入射到所述的编码板(7),经该编码板(7)调制后被所述的光斑探测器(8)接收,该光斑探测器(8)与计算机(9)相连。2.根据权利要求1所述的激光等离子体电子密度测量装置,其特征在于:所述的编码板(7)垂直放置于聚焦光束的入射方向,确保激光器(4)、扩束系统(5)、第二聚焦镜(6)和编码板(7)与光束垂直且中心保持在光轴上,该编码板(7)的空间分布已知,尺寸大小满足光路中光束全部通过。3.利用权利要求1或2所述的激光等离子体电子密度测量装置测量待测激光等离子体的电子密度方法,其特征在于,该方法包括以下步骤:①以激光器(4)发出的相干光光束为基准,确定光轴,沿光轴依次放置扩束系统(5)、第二聚焦镜(6)、编码板(7)和光斑探测器(8);相干光光束经过扩束系统(5)后光束口径增大,经第二聚焦镜(6)汇聚后,经该编码板(7)调制后被所述的光斑探测器(8)接收,光斑探测器(8)记录第一幅衍射光斑;所述的编码板(7)垂直放置于聚焦光束的入射方向,确保各光学元件与光束垂直且中心保持在光轴上,该编码板(7)的空间分布已知,尺寸大小满足光路中光束全部通过;②沿所述的驱动激光束(1)的光路方向依次放置第一聚焦镜(2)和作用物质,该作用物质位于所述的第一聚焦镜(2)的焦点处;驱动激光束(1)穿过第一聚焦镜(2)后产生聚焦光束,聚焦光束与放置作用物质相互作用产生待测等离子体(3);③激光器(4)发出的相干光光束经过扩束系统(5)后光束口径增大,然后穿过产生的待测等离子体(3)区域,经第二聚焦镜(6)将穿过待测等离子体(3)后的光束汇聚,经该编码板(7)调制后被所述的光斑探测器(8)接收,光斑探测器(8)记录第二幅衍射光斑;④光斑探测器(8)将第一幅衍射光斑和第二幅衍射光斑传输给计算机(9),由计算机(9)处理获得相位变化空间分布。4.根据权利要求3所述的电子密度测量方法,其特征在于,所述的步骤④,由计算机(9)处理获得相位变化空间分布,具体步骤如下:步骤4.1测量参数值:用直尺测量第二聚焦镜(6)到编码板(7)的直线距离L0,第二聚焦镜(6)焦点到编码板(7)的直线距离L1,编码板(7)到光斑探测器(8)靶面的直线距离L2;步骤4.2给第二聚焦镜(6)焦点处光波分布一初始的随机猜测值构造一个光阑,其孔径大小限制函数S1,初始光阑半径r1,当实际光阑半径在初始光阑半径r1范围以内,则函数S1取值为1,代表光透过光阑,当实际光阑半径在初始光阑半径r1范围以外,则函数S1取值为...

【专利技术属性】
技术研发人员:陶华刘诚朱健强
申请(专利权)人:中国科学院上海光学精密机械研究所
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1