基于光电扫描避障的潮汐车道变更系统及方法技术方案

技术编号:17871903 阅读:24 留言:0更新日期:2018-05-05 19:05
本发明专利技术公开了一种基于光电扫描避障的潮汐车道变更系统及方法,包括远程控制中心、交通信号灯后台数据服务器、路段控制基站和车道变更机器人群组,远程控制中心的数据传输端口与交通信号灯后台数据服务器的数据传输端口通过光纤传输或者无线数据传输的方式进行实时数据传输,远程控制中心将潮汐车道变更信号实时发送至路段控制基站,路段控制基站通过无线数据传输的方式将行走命令控制信号实时发送至对应路段上所有的车道变更机器人群组上;本发明专利技术利用道路出入口设置移动式隔离墩,灵活机动,成本低;利用北斗系统进行隔离墩实时定位,控制精度高、安全性高;利用北斗系统精确定位实现多车道变更。

【技术实现步骤摘要】
基于光电扫描避障的潮汐车道变更系统及方法
本专利技术涉及潮汐车道
,更具体的说,尤其涉及一种基于光电扫描避障的潮汐车道变更系统及方法。
技术介绍
汽车为人类的出行带来了极大的便利,但随着汽车数量的快速增加,交通拥堵问题越来越严重。虽然政府不断地修建公路、城市快速路,但是道路的增长速度远低于汽车数量的增长。为了解决这个问题,政府近年来投入越来越多的资金和精力用于开发智能交通系统,提高道路的通行效率,缓解交通拥堵问题。交通的“潮汐现象”是城市交通拥堵的重要原因之一,每天早晨进城方向交通流量大,出城方向交通流量小,而晚上则是出城方向的流量大,进城方向交通流量小。应对早晚高峰车流的一种典型解决方法是启用潮汐车道,早高峰进城车辆多时,增加进城方向车道数,减少出城方向车道数,晚高峰出城车辆多时,增加出城方向车道数,减少进城方向车道数。目前的潮汐车道是定时潮汐车道,在早晚高峰期的规定的时间内改变潮汐车道的行驶方向,来调整车道数,采用的也是地面双黄线和交通指示灯对车道方向实施控制。传统的利用地面双黄线和交通指示灯对车道方向实施控制的方式,由于众多车辆“顶牛”、标识不够清楚等诸多弊端,逐渐被在车道边设置隔离带的方式替代。而通过人工在不同车道间设置隔离带由于工作量巨大,实施起来有诸多不便,故又有许多新兴的智能化潮汐车道应运而生。美国金门大桥是世界上最早实行可变车道的路段之一,桥面宽27米,除去两侧的人行道,路段为双向六车道,上午时段四进四出,下午护栏向右移一个车道,形成相反情况。早期管理部门采用人工设置方法设置潮汐车道来解决这个问题。在大桥中间的车道线上面每隔一段都有一个眼,工作车缓缓行驶在车道中间,两边各有一个工作人员坐在车底的平台上,工作车的两边的工作人员分别进行拔插操作,走一遍即可把车道改好。在国内的许多小城市也会采用这种人工的方式设置塑料交通安全堆,从而隔离出一种单独的道路供潮汐车辆使用。这种人工设置潮汐车道的方式操作比较简单,维护费用以及成本较低;但是这种早、晚高峰期人工设置潮汐道路的方式需要耗费大量的人工和时间成本,效率低,且潮汐车道变换不易,同时高速行驶的车辆容易对施工人员造成伤害,风险系数较高。为了解决人工设置潮汐车道效率低、时间成本高的问题,交管部门采用交通灯和交通指示牌的方式,对某些固定的潮汐道路划定固定的潮汐时间来缓解交通拥堵时的压力。在上下班高峰期或出城进城高峰期的时候,通过设置相应的交通指示灯或指示牌,临时设置潮汐道路,缓解道路拥堵,这种系统控制方式节约了时间和人工成本,提高了潮汐车道的适用性。但是这种方式没有明显的隔离护栏,由于驾驶员对道路标识不熟悉或注意力不集中等问题,容易造成误闯误行,从而影响对潮汐车道的利用,严重时可能会造成一定的交通事故。美国等发达国家针对人工设置潮汐车道和交叉口信号灯控制的一系列问题,专利技术了一种潮汐车道变换机,既克服了人工设置潮汐效率低,又实现了潮汐道路的有效隔离。这种潮汐车道变换机本质上是一辆运行中的机车,通过在机车内部设置各种机械装置,随着机车的运行将一条车道的护栏挪到另一条车道上去,这大大提高了车道护栏变换的速度,降低了人工成本,对于特别冗长的潮汐车道还可以分为几段由多辆变道机同时运行完成车道变换。但是由于规划限制,原有的隔离带或者绿化带不能拆除,导致潮汐车道变换机不能广泛使用,且该变换机采购成本较高,需要特制的隔离带,同时一台潮汐车道变换机的造价在300万美元以上,因此也极大限制了这一项技术的发展。为了提高潮汐车道的适应性,深圳的研发人员又设计出一种智能化潮汐车道,该智能化潮汐车道采用遥控护栏与灯控的组合形式在深南大道南山段正式亮相,该智能化潮汐车道可以自动根据车流量的大小,自动设置潮汐车道。这种智能化潮汐车道创新亮点在于遥控护栏的引进,它形似普通护栏,但底部电机带动四个滑轮,只要插上电源,护栏就可以随着遥控器指挥进行横向移动,在1分钟内实现潮汐车道的隔离切换。同时还具有智能障碍识别技术,能够检测到护栏变道过程中遇到的障碍物。相比于传统的交通疏导方式,大大降低了交警执勤的风险和工作负荷。交警可根据现场交通情况,通过手持遥控器,控制可变分向行驶车道标志随时调整车道行驶方向;若路口有明显通行特征,在没有突发事件的情况下,交警还可以提前进行程序输入固定标志转换的时间,由它自动变换;此外,控制中心还可以通过仪器监控路口路况,适时使用远程控制手段对标牌进行控制;若实现计算机联网的路口信号机,还能通过自动识别系统进行辨别并自动调控。目前深圳、北京等地区已经相继投入使用,应用前景非常广泛。但是,在这种智能化潮汐车道的运行过程中,由于中央隔离护栏和绿化带的存在,一方面,东行排队溢出后的车辆无法进入潮汐车道左转,导致潮汐车道利用率不高,另一方面,南进口的右转这两由于受护栏阻碍无法进入潮汐车道,也降低了潮汐车道的利用率。同时,这种通过手持遥控器进行智能化潮汐车道控制的方式从本质上来说依然是人工手动控制,不稳定因素较多,极容易受到人力因素的影响,而且不容易集中控制,极大地限制了智能化潮汐车道的发展。智能化潮汐车道的通讯也是限制潮汐车道发展的重要因素之一,例如深圳的这种智能化潮汐车道智能交警现场手持遥控器的方式对遥控护栏进行控制,其仅可进行近距离控制,而无法实现大范围遥控护栏远程的集中控制。物联网技术则是突破这一问题的重要契机。随着智能化潮汐车道和物联网的发展,市场上对无线技术的要求日益增加。尤其是在对物联网技术倡导的如何打造低功耗、高可靠性的无线连接,成为了现代物联网设备制造商的追求,也成为了无线芯片供应商的目标。物联网应用中的无线技术有很多种,包括局域网和广域网。组成局域网的无线技术有2.4GHz的WiFi,蓝牙、Zigbee等,组成广域网的无线技术主要有2G/3G/4G。LoRa是LPWAN通信技术中的一种,是一种基于扩频技术的超远距离无线传输技术。这一技术改变了以往关于传输距离与功率的折衷考虑方式,为用户提供一种简单的能实现远距离、低功耗的系统。同时,LoRa在全球范围内免费频段使用,包括433、868、915MHz。LoRa技术是一种超长距离的小无线技术,融合了数字扩频、数字信号处理和前向纠错编码技术。使用LoRa技术可以有数万个无线数传模块组成的一个无线数传网络,类似现有的移动通信的基站网,每一个节点类似移动网络的手机用户,在整个网络覆盖范围内,每个网络节点和网关间的可视通信距离可以达到5公里,甚至更远。LoRa技术具有远距离、低功耗、多节点、低成本的特点。若是将LoRa系统融入到智能化潮汐车道的控制中,将可以摆脱单纯依靠交警手持遥控器来控制智能化潮汐车道的缺陷,以实现智能化潮汐车道的集中控制,并能够极大的降低生产成本,降低智能化潮汐车道的整体功耗,提高智能化潮汐车道的普及率。定位系统在潮汐车道自动运行的使用中有着极为重要的作用,目前的定位系统主要包括美国的GPS卫星导航系统、俄罗斯的格洛纳斯GLONASS卫星导航系统和我国的北斗卫星导航系统。美国GPS卫星导航系统是利用在空间飞行的卫星不断向地面广播发送某种频率并加载了某些特殊定位信息的无线电信号来实现定位测量的定位系统。该系统由空间运行的卫星星座、地面控制部分、用户部分等三部分组成。GPS卫星导航系本文档来自技高网...
基于光电扫描避障的潮汐车道变更系统及方法

【技术保护点】
基于光电扫描避障的潮汐车道变更系统,其特征在于:包括远程控制中心、交通信号灯后台数据服务器、路段控制基站和车道变更机器人群组,远程控制中心的数据传输端口与交通信号灯后台数据服务器的数据传输端口通过光纤传输或者无线数据传输的方式进行实时数据传输,远程控制中心将潮汐车道变更信号实时发送至路段控制基站,路段控制基站通过无线数据传输的方式将行走命令控制信号实时发送至对应路段上所有的车道变更机器人群组上,各车道变更机器人群组在接收到各自的行走命令时执行相应的移动,并实时将位置信息反馈给路段控制基站;车道变更机器人群组包括多组沿潮汐车道方向分布的车道变更机器人组,相邻的车道变更机器人组之间间隔0.5~1米,每个车道变更机器人组均包括A墩(1)、B墩(2)和连接护栏(3),A墩(1)和连接护栏(3)之间采用铰链连接,B墩(2)和连接护栏(3)固定连接;所述A墩(1)和B墩(2)上均设置有北斗模块(8)、嵌入式控制模块、报警灯(5)、太阳能电池板(6)、铅酸蓄电池(7)、LoRa模块、底盘(9)和外壳(4),嵌入式控制模块通过LoRa模块连接路段控制基站,铅酸蓄电池(7)固定在底盘(9)上,底盘(9)套装在外壳(4)底部,底盘(9)上设置有凸块,外壳(4)底部设置有与底盘(9)上的凸块相配合的凹槽,外壳(4)上还固定有底盘驱动电机(10),底盘驱动电机(10)连接滚珠丝杠(11),底盘(9)上设置有与所述滚珠丝杠(11)相配合的丝杠螺母(12),所述丝杠螺母(12)套装在所述滚珠丝杠(11)上,底盘驱动电机(10)带动滚珠丝杠(11)转动时驱动底盘(9)在外壳(4)的底部上下运动;所述外壳(4)上端设置有报警灯(5),外壳(4)的外表面设置有太阳能电池板(6),太阳能电池板(6)通过太阳能充电电路连接铅酸蓄电池(7),所述北斗模块(8)均设置在外壳(4)内部,移动机构和锁定机构均设置在底盘(9)上;所述A墩(1)的底盘(9)上安装有一个主动轮(14)和两个被动轮(15),A墩(1)的底盘(9)上还设置有一个定向电机,定向电机连接主动轮(14)被驱动所述主动轮(14)转动,通过主动轮(14)运动带动整个A墩(1)的运动;所述A墩(1)内部还设置有护栏驱动电机(17),护栏驱动电机(17)连接连接护栏(3),护栏驱动电机(17)运动时带动所述连结护栏和B墩(2)组成的整体绕中心轴进行转动所述A墩(1)的内部还设置有第一漫反射光电开关(19)和第一光电开关驱动电机(18),第一光电开关驱动电机(18)连接第一漫反射光电开关(19)并带动所述第一漫反射光电开关(19)的转动,A墩(1)上开设有水平大槽口(22),第一漫反射光电开关(19)透过水平大槽口(22)照射到A墩(1)外部;所述B墩(2)的底盘(9)上安装有三个万向轮(16),B墩(2)的内部还设置有第二漫反射光电开关(21)和第二光电开关驱动电机(20),第二光电开关驱动电机(20)连接第二漫反射光电开关(21)并带动所述第二漫反射光电开关(21)的转动,B墩(2)上开设有水平小槽口(23),第二漫反射光电开关(21)透过水平小槽口(23)照射到B墩(2)外部。...

【技术特征摘要】
1.基于光电扫描避障的潮汐车道变更系统,其特征在于:包括远程控制中心、交通信号灯后台数据服务器、路段控制基站和车道变更机器人群组,远程控制中心的数据传输端口与交通信号灯后台数据服务器的数据传输端口通过光纤传输或者无线数据传输的方式进行实时数据传输,远程控制中心将潮汐车道变更信号实时发送至路段控制基站,路段控制基站通过无线数据传输的方式将行走命令控制信号实时发送至对应路段上所有的车道变更机器人群组上,各车道变更机器人群组在接收到各自的行走命令时执行相应的移动,并实时将位置信息反馈给路段控制基站;车道变更机器人群组包括多组沿潮汐车道方向分布的车道变更机器人组,相邻的车道变更机器人组之间间隔0.5~1米,每个车道变更机器人组均包括A墩(1)、B墩(2)和连接护栏(3),A墩(1)和连接护栏(3)之间采用铰链连接,B墩(2)和连接护栏(3)固定连接;所述A墩(1)和B墩(2)上均设置有北斗模块(8)、嵌入式控制模块、报警灯(5)、太阳能电池板(6)、铅酸蓄电池(7)、LoRa模块、底盘(9)和外壳(4),嵌入式控制模块通过LoRa模块连接路段控制基站,铅酸蓄电池(7)固定在底盘(9)上,底盘(9)套装在外壳(4)底部,底盘(9)上设置有凸块,外壳(4)底部设置有与底盘(9)上的凸块相配合的凹槽,外壳(4)上还固定有底盘驱动电机(10),底盘驱动电机(10)连接滚珠丝杠(11),底盘(9)上设置有与所述滚珠丝杠(11)相配合的丝杠螺母(12),所述丝杠螺母(12)套装在所述滚珠丝杠(11)上,底盘驱动电机(10)带动滚珠丝杠(11)转动时驱动底盘(9)在外壳(4)的底部上下运动;所述外壳(4)上端设置有报警灯(5),外壳(4)的外表面设置有太阳能电池板(6),太阳能电池板(6)通过太阳能充电电路连接铅酸蓄电池(7),所述北斗模块(8)均设置在外壳(4)内部,移动机构和锁定机构均设置在底盘(9)上;所述A墩(1)的底盘(9)上安装有一个主动轮(14)和两个被动轮(15),A墩(1)的底盘(9)上还设置有一个定向电机,定向电机连接主动轮(14)被驱动所述主动轮(14)转动,通过主动轮(14)运动带动整个A墩(1)的运动;所述A墩(1)内部还设置有护栏驱动电机(17),护栏驱动电机(17)连接连接护栏(3),护栏驱动电机(17)运动时带动所述连结护栏和B墩(2)组成的整体绕中心轴进行转动所述A墩(1)的内部还设置有第一漫反射光电开关(19)和第一光电开关驱动电机(18),第一光电开关驱动电机(18)连接第一漫反射光电开关(19)并带动所述第一漫反射光电开关(19)的转动,A墩(1)上开设有水平大槽口(22),第一漫反射光电开关(19)透过水平大槽口(22)照射到A墩(1)外部;所述B墩(2)的底盘(9)上安装有三个万向轮(16),B墩(2)的内部还设置有第二漫反射光电开关(21)和第二光电开关驱动电机(20),第二光电开关驱动电机(20)连接第二漫反射光电开关(21)并带动所述第二漫反射光电开关(21)的转动,B墩(2)上开设有水平小槽口(23),第二漫反射光电开关(21)透过水平小槽口(23)照射到B墩(2)外部。2.根据权利要求1所述的基于光电扫描避障的潮汐车道变更系统,其特征在于:所述A墩(1)的底盘(9)上安装有主动轮(14)和被动轮(15)均为定向轮,定向电机内嵌在A墩(1)的底盘(9)内部,定向电机与铅酸蓄电池(7)电连接并通过铅酸蓄电池(7)供电,定向电机与嵌入式控制模块电连接并通过嵌入式控制模块控制自身的运转速度及运转方向,定向电机连接主动轮(14)并驱动所述主动轮(14)转动,通过主动轮(14)运动带动整个A墩(1)的运动。3.根据权利要求1所述的基于光电扫描避障的潮汐车道变更系统,其特征在于:所述水平大槽口(22)的开口弧度为四分之一圆。4.根据权利要求1所述的基于光电扫描避障的潮汐车道变更系统,其特征在于:所述水平小槽口(23)的开口弧度为四分之一圆。5.根据权利要求1所述的基于光电扫描避障的潮汐车道变更方法,其特征在于:包括如下步骤:S1:在潮汐车道的一侧沿潮汐车道的方向设置多组车道变更机器人组,每组车道变更机器人组均包括A墩(1)和B墩(2),相邻的一组车道变更机器人组之间间隔0.5~1米;S2:远程控制中心根据交通信号灯后台数据服务器传输的车流量信息判断每个路段是否需要进行潮汐车...

【专利技术属性】
技术研发人员:单晓杭夏卫海金旭
申请(专利权)人:浙江工业大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1