基于轮廓波集成DBN的极化SAR图像变化检测方法技术

技术编号:17781114 阅读:62 留言:0更新日期:2018-04-22 10:25
一种基于轮廓波集成DBN的极化SAR图像变化检测方法,主要解决现有方法中极化SAR图像变化检测精度不高的问题。本发明专利技术的具体步骤如下:(1)输入同一地区不同时相的两幅极化SAR图像的两个极化相干矩阵;(2)滤除相干噪声;(3)归一化处理滤波后的极化相干矩阵;(4)提取特征矩阵F1和F2中每个元素的对角线元素;(5)对特征矩阵E1和E2进行非下采样轮廓波变换;(6)对特征矩阵进行尺度级联融合;(7)构造样本集;(8)构造轮廓波集成深度置信网络DBN变化检测模型;(9)训练轮廓波集成深度置信网络DBN变化检测模型;(10)输出变化检测结果。本发明专利技术具有对极化SAR图像变化检测结果轮廓清晰且精度高的优点。

【技术实现步骤摘要】
基于轮廓波集成DBN的极化SAR图像变化检测方法
本专利技术属于图像处理
,更进一步涉及遥感图像变化检测
中的一种基于轮廓波集成深度置信网络DBN模型(DeepBeliefNetwork)的极化合成孔径雷达SAR(SyntheticApertureRadar)图像变化检测方法。本专利技术可用于检测两幅不同时相获取的极化SAR图像中对应位置的水域、舰船、港口等的变化,可广泛应用于民用领域和军事应用领域,比如土地利用,军事监测,城市规划,灾后重建等。
技术介绍
极化SAR图像变化检测是指利用同一地区不同时相的两幅极化SAR图像来检测和分析地面的变化情况。由于极化SAR技术与普通光学遥感技术相比具有全天候、全天时工作的特点,使得极化SAR图像变化检测在民用领域和军事应用领域有着广泛的应用。近年来,利用极化SAR图像进行变化检测在国际遥感领域受到高度重视,已经成为图像处理的主要研究方向之一。GanchaoLiu等人在其发表的论文“AnewpatchbasedchangedetectorforpolarimetricSARdata”(PatternRecognition,2015,48(3):685-695)中提出了一种基于块相似性的极化SAR图像变化检测方法。该方法的首先对两幅不同时相的极化SAR图像运用非局部滤波方法和块相似算法进行降噪的预处理操作。接着构造等效视数估计器,分别计算预处理后的两幅极化SAR图像的等效视数。然后根据求得的等效视数,对两幅预处理后的极化SAR图像做比值操作,得到比值图。最后设置合理的阈值,根据比值图求得变化检测图。由于该方法只考虑两幅图像的局部特征,虽然能够得到较好的变化检测结果,但是,该方法仍然存在的不足之处是,该方法使用的局部滤波方法使得极化SAR图像仍然存在残余斑点噪声,影响等效视数的估计,所以仍存在变化检测精度不高的问题。天津大学在其申请的专利文献“基于极化状态提取的极化SAR图像变化检测方法”(专利申请号:201610526246.1,公开号:106204569A)中提出了一种基于极化状态提取图像变化检测方法。该方法的具体步骤包括:第一步,对已配准的两时相图像分别进行去取向和相干斑抑制的预处理操作;第二步,自动选取预处理后两时相图像中的不变目标作为样本,并构造样本目标的特征矢量;第三步,寻找使得目标特征矢量相似性系数最大的极化椭圆率角和极化方位角作为该样本目标的最优极化状态;第四步,将两幅图像所有样本目标的最优极化状态取平均后得到整幅图像的最优极化状态组合χopt和ψopt,并在最优极化状态下构造变化检测特征量;第五步,根据求得的χopt和ψopt计算极化Kennaugh矩阵,结合变化检测特征量,利用极化合成公式,计算两个时相极化SAR图像对应目标在最优极化状态下的接收功率PA和PB,并构造比值变化检测特征量F;第六步,利用双阈值判别方法对变化检测特征量F进行判别,得到变化检测结果F′。虽然,该方法提取了极化SAR图像特有的极化状态,对于极化状态特征明显的极化SAR图像有较好的检测,但是,该方法仍然存在的不足之处是,该方法利用接收功率比值法构造检测特征量相对简单,无法检测出对功率变化不敏感的变化区域,同时该方法没有充分考虑极化SAR图像的尺度特征信息,从而导致变化检测结果边缘模糊,且精度不高等问题。
技术实现思路
本专利技术的目的在于克服上述现有技术的不足,提出了一种基于轮廓波集成DBN的极化SAR图像变化检测方法。本专利技术与现有其他极化SAR图像变化检测技术相比,能够有效提取极化SAR图像的特征,使得变化检测结果边缘清晰,且提高极化SAR图像变化检测的检测精度。本专利技术实现上述目的的思路是:第一步,输入不同时相同一地区的极化SAR图像的极化相干矩阵;第二步,精致极化Lee滤波滤除相干噪声;第三步,归一化处理极化相干矩阵;第四步,提取特征矩阵F1和F2中每个元素的对角线元素;第五步,对特征矩阵进行非下采样轮廓波变换;第六步,对特征矩阵进行尺度级联融合;第七步,构造样本集;第八步,构造集成变化检测模型;第九步,训练集成变化检测模型;第十步,输出集成变化检测结果。本专利技术实现的具体步骤包括如下:包括如下步骤:(1)输入同一地区不同时相的两幅极化合成孔径雷达SAR图像的两个极化相干矩阵;(2)滤除相干噪声:采用精致极化Lee滤波方法,对两个极化相干矩阵分别进行滤除相干噪声操作,得到两个滤波后的极化相干矩阵,其中,极化相干矩阵中每个元素是一个3×3像素的矩阵,每个像素点有9维个特征;(3)归一化处理滤波后的极化相干矩阵:将两个滤波后的极化相干矩阵中的元素值均归一化到[0,1]之间,得到两个M1×M2×9个像素的三维特征矩阵F1和F2,三维特征矩阵中每个元素是由一个3×3个像素组成,其中,M1表示输入的极化合成孔径雷达SAR图像的长,M2表示输入的极化合成孔径雷达SAR图像的宽;(4)提取三维特征矩阵F1和F2中每个元素的对角线元素:从三维特征矩阵F1和F2的每个3×3个像素矩阵中提取对角线元素,组成两个M1×M2×3个像素的三维特征矩阵E1和E2;(5)对三维特征矩阵E1和E2进行非下采样轮廓波变换:利用非下采样轮廓波变换方法,对三维特征矩阵E1和E2分别进行非下采样轮廓波分解,得到两个M1×M2×33个像素的高频特征矩阵A1和A2以及两个M1×M2×3个像素的低频特征矩阵B1和B2;(6)对特征矩阵进行尺度级联融合:利用尺度级联融合方法,分别对高频特征矩阵A1和A2、低频特征矩阵B1和B2进行矩阵融合,得到M1×M2×4个像素的三维特征矩阵F;(7)构造样本集:(7a)以5×5像素的窗口对三维特征矩阵F滑动取块,得到M1×M2个样本块,每个样本块是由一个5×5×4个像素组成的三维特征矩阵,将M1×M2个样本块组成特征矩阵集P;(7b)利用自助采样法,将特征矩阵集P进行多次自助采样操作,得到多个训练样本集和测试样本集,自助采样操作次数选取的范围为[20,50];(8)构造轮廓波集成深度置信网络DBN变化检测模型:(8a)构造与自助采样次数相同个数的4层深度置信网络模型;(8b)将每个深度置信网络模型与一个多数表决器相连,得到集成深度置信网络DBN变化检测模型;(9)训练轮廓波集成深度置信网络DBN变化检测模型:将每个训练样本集输入到轮廓波集成深度置信网络DBN变化检测模型中,对轮廓波集成深度置信网络DBN变化检测模型进行训练,得到训练好的轮廓波集成深度置信网络DBN变化检测模型;(10)输出轮廓波集成深度置信网络DBN变化检测结果:将每个测试样本集输入到训练好的轮廓波集成深度置信网络DBN变化检测模型中,输出得到的测试样本集中每个像素的变化检测结果。本专利技术与现有技术相比具有以下优点:第一,由于本专利技术通过对特征矩阵进行非下采样轮廓波变换,提取了特征矩阵高频尺度特征和低频尺度特征,克服了现有技术中没有充分考虑极化SAR图像的尺度特征信息,从而导致变化检测结果边缘模糊的问题,使得本专利技术可以充分利用极化SAR图像的多尺度特征,使检测后的极化SAR图像的边缘更加清晰。第二,由于本专利技术采用集成变化检测模型,将25个深度置信网络模型和一个多数表决器相连,将深度学习自动提取的特征相结合,克本文档来自技高网
...
基于轮廓波集成DBN的极化SAR图像变化检测方法

【技术保护点】
一种基于轮廓波集成深度置信网络DBN的极化合成孔径雷达SAR图像变化检测方法,其特征在于,包括如下步骤:(1)输入同一地区不同时相的两幅极化合成孔径雷达SAR图像的两个极化相干矩阵;(2)滤除相干噪声:采用精致极化Lee滤波方法,对两个极化相干矩阵分别进行滤除相干噪声操作,得到两个滤波后的极化相干矩阵,其中,极化相干矩阵中每个元素是一个3×3像素的矩阵,每个像素点有9维个特征;(3)归一化处理滤波后的极化相干矩阵:将两个滤波后的极化相干矩阵中的元素值均归一化到[0,1]之间,得到两个M1×M2×9个像素的三维特征矩阵F1和F2,三维特征矩阵中每个元素是由一个3×3个像素组成,其中,M1表示输入的极化合成孔径雷达SAR图像的长,M2表示输入的极化合成孔径雷达SAR图像的宽;(4)提取三维特征矩阵F1和F2中每个元素的对角线元素:从三维特征矩阵F1和F2的每个3×3个像素矩阵中提取对角线元素,组成两个M1×M2×3个像素的三维特征矩阵E1和E2;(5)对三维特征矩阵E1和E2进行非下采样轮廓波变换:利用非下采样轮廓波变换方法,对三维特征矩阵E1和E2分别进行非下采样轮廓波分解,得到两个M1×M2×33个像素的高频特征矩阵A1和A2以及两个M1×M2×3个像素的低频特征矩阵B1和B2;(6)对特征矩阵进行尺度级联融合:利用尺度级联融合方法,分别对高频特征矩阵A1和A2、低频特征矩阵B1和B2进行矩阵融合,得到M1×M2×4个像素的三维特征矩阵F;(7)构造样本集:(7a)以5×5像素的窗口对三维特征矩阵F滑动取块,得到M1×M2个样本块,每个样本块是由一个5×5×4个像素组成的三维特征矩阵,将M1×M2个样本块组成特征矩阵集P;(7b)利用自助采样法,将特征矩阵集P进行多次自助采样操作,得到多个训练样本集和测试样本集,自助采样操作次数选取的范围为[20,50];(8)构造轮廓波集成深度置信网络DBN变化检测模型:(8a)构造与自助采样次数相同个数的4层深度置信网络模型;(8b)将每个深度置信网络模型与一个多数表决器相连,得到集成深度置信网络DBN变化检测模型;(9)训练轮廓波集成深度置信网络DBN变化检测模型:将每个训练样本集输入到轮廓波集成深度置信网络DBN变化检测模型中,对轮廓波集成深度置信网络DBN变化检测模型进行训练,得到训练好的轮廓波集成深度置信网络DBN变化检测模型;(10)输出轮廓波集成深度置信网络DBN变化检测结果:将每个测试样本集输入到训练好的轮廓波集成深度置信网络DBN变化检测模型中,输出得到的测试样本集中每个像素的变化检测结果。...

【技术特征摘要】
1.一种基于轮廓波集成深度置信网络DBN的极化合成孔径雷达SAR图像变化检测方法,其特征在于,包括如下步骤:(1)输入同一地区不同时相的两幅极化合成孔径雷达SAR图像的两个极化相干矩阵;(2)滤除相干噪声:采用精致极化Lee滤波方法,对两个极化相干矩阵分别进行滤除相干噪声操作,得到两个滤波后的极化相干矩阵,其中,极化相干矩阵中每个元素是一个3×3像素的矩阵,每个像素点有9维个特征;(3)归一化处理滤波后的极化相干矩阵:将两个滤波后的极化相干矩阵中的元素值均归一化到[0,1]之间,得到两个M1×M2×9个像素的三维特征矩阵F1和F2,三维特征矩阵中每个元素是由一个3×3个像素组成,其中,M1表示输入的极化合成孔径雷达SAR图像的长,M2表示输入的极化合成孔径雷达SAR图像的宽;(4)提取三维特征矩阵F1和F2中每个元素的对角线元素:从三维特征矩阵F1和F2的每个3×3个像素矩阵中提取对角线元素,组成两个M1×M2×3个像素的三维特征矩阵E1和E2;(5)对三维特征矩阵E1和E2进行非下采样轮廓波变换:利用非下采样轮廓波变换方法,对三维特征矩阵E1和E2分别进行非下采样轮廓波分解,得到两个M1×M2×33个像素的高频特征矩阵A1和A2以及两个M1×M2×3个像素的低频特征矩阵B1和B2;(6)对特征矩阵进行尺度级联融合:利用尺度级联融合方法,分别对高频特征矩阵A1和A2、低频特征矩阵B1和B2进行矩阵融合,得到M1×M2×4个像素的三维特征矩阵F;(7)构造样本集:(7a)以5×5像素的窗口对三维特征矩阵F滑动取块,得到M1×M2个样本块,每个样本块是由一个5×5×4个像素组成的三维特征矩阵,将M1×M2个样本块组成特征矩阵集P;(7b)利用自助采样法,将特征矩阵集P进行多次自助采样操作,得到多个训练样本集和测试样本集,自助采样操作次数选取的范围为[20,50];(8)构造轮廓波集成深度置信网络DBN变化检测模型:(8a)构造与自助采样次数相同个数的4层深度置信网络模型;(8b)将每个深度置信网络模型与一个多数表决器相连,得到集成深度置信网络DBN变化检测模型;(9)训练轮廓波集成深度置信网络DBN变化检测模型:将每个训练样本集输入到轮廓波集成深度置信网络DBN变化检测模型中,对轮廓波集成深度置信网络DBN变化检测模型进行训练,得到训练好的轮廓波集成深度置信网络DBN变化检测模型;(10)输出轮廓波集成深度置信网络DBN变化检测结果:将每个测试样本集输入到训练好的轮廓波集成深度置信网络DBN变化检测模型中,输出得到的测试样本集中每个像素的变化检测结果。2.根据权利要求1所述的基于轮廓波集成深度置信网络DBN的极化合成孔径雷达SAR图像变化检...

【专利技术属性】
技术研发人员:焦李成屈嵘李玉景陈璞花杨淑媛侯彪马文萍刘芳唐旭古晶张丹马晶晶
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1