当前位置: 首页 > 专利查询>浙江大学专利>正文

针对产品浓度曲线优化算法的内部热耦合空分塔控制装置制造方法及图纸

技术编号:17778579 阅读:32 留言:0更新日期:2018-04-22 06:32
本发明专利技术公开了一种针对产品浓度曲线优化算法的内部热耦合空分塔控制装置,包括与内部热耦合空分塔直接连接的智能仪表、控制器和DCS系统。所述DCS系统包括上位机、控制站、存储装置、现场总线和数据接口,存储装置、控制站。所述上位机用以实现控制参数的实时优化,并将优化后的控制参数通过现场总线传递给控制站。所述控制站根据得到的控制参数通过与现场总线相连的数据接口,对控制器进行调整。本发明专利技术能够很好地处理内部热耦合空分塔的强非线性特征,同时针对产品浓度曲线特性,减少中间塔板累积误差,具有高效的在线运算速度和出色的节能效果,并具有非常好的伺服跟踪控制效果、干扰抑制效果。

【技术实现步骤摘要】
一种针对产品浓度曲线优化算法的内部热耦合空分塔控制装置
本专利技术涉及工业节能控制的非线性控制领域,特别地,涉及内部热耦合空分过程的实时优化控制装置设计。
技术介绍
空分装置是对空气进行分离,并得到氧、氮、氩等高纯工业气体的装置,它被广泛应用于石油、化工、冶金、电子、能源、航空航天、食品饮料、医疗保健等各种工业领域。所得到的氧、氮和氩产品在一个国家国民经济中的应用十分广泛。自从上世纪70年代的两次“石油危机”以来,能源危机加深,强烈地要求许多领域能源的有效利用。在能耗很大的空气分离工业中,能源成本占了空气产品价格的75%。于是出现这样的情况,一方面,由于现代工业的发展,一些大型工业项目如钢铁工业、化学工业、石油开采等都需要由大型空分装置提供空气制品,需求量也越来越大。另一方面,能耗成本也随着能源危机,变得越来越大。因此在这样的形势下,提高空气分离技术的能量效率显得刻不容缓。内部热耦合空分技术比常规空分技术节能40%以上,节能效果显著。然而,由于内部热耦合空分过程具有强耦合、强病态、强不对称性、强反向响应等复杂的非线性动态特性,该塔的控制策略设计显得尤为困难。传统的PID、内模控制方案等已经不能满足要求,在内部热耦合空分塔的过程控制当中,这些方案已经很难使空分过程稳定。而基于线性辨识模型的控制方案只能工作在稳态工作点附近,稍微增大干扰幅度,或者设定值阶跃变化,系统控制质量则出现明显下降。准确把握内部热耦合空分塔的非线性特性,应用实时优化技术,在此基础上同时实现内部热耦合空分塔的控制要求和节能要求,是提高该过程的生产控制品质的前提,已经成为一项关键的空分节能技术,具有十分重要的意义。
技术实现思路
为了克服目前目前内部热耦合空分塔的控制装置抑制干扰能力差、控制效果差、难以实现精确设定值跟踪、节能效果欠佳的不足,本专利技术的目的在于提供一种抑制干扰能力良好、控制效果好、可以实现精确迅速的设定值跟踪、同时保证节能效果的内部热耦合空分塔的非线性控制装置。本专利技术解决其技术问题所采用的技术方案是:一种针对产品浓度曲线优化算法的内部热耦合空分塔控制装置,包括与内部热耦合空分塔直接连接的智能仪表、控制器和DCS系统。所述DCS系统包括上位机、控制站、存储装置、现场总线和数据接口,存储装置、控制站及上位机通过现场总线与数据接口相连接。所述智能仪表通过温度检测元件、压力检测元件、流量检测元件测量相关参数,并与数据接口连接。所述上位机用以实现控制参数的实时优化,包括浓度曲线描述模块、设定值转换模块、控制参数实时优化模块,并将优化后的控制参数通过现场总线传递给控制站。所述控制站根据得到的控制参数通过与现场总线相连的数据接口,对控制器进行调整。所述控制器实现对内部热耦合空分塔的直接控制调整。所述上位机包括:1)浓度曲线描述模块,通过智能仪表中的温度检测元件采集温度信息以及压力检测元件采集压强数据,采集到的数据通过数据接口进行电信号转换,并通过现场总线将检测信号输送到所述模块,用以推断出各塔板浓度分布曲线的静态描述函数如下:其中,为t采样时刻第j块塔板的液相i组分(氧气、氮气或者氩气)预测浓度,Si,h(t)、Si,l(t)分别为t采样时刻内部热耦合空分塔高压塔、低压塔浓度曲线的表征位置,Xi,h_min表示高压塔i组分浓度曲线的最小浓度值,Xi,h_max表示高压塔i组分浓度曲线的最大浓度值,γi,h表示高压塔i组分浓度曲线表征位置处的斜率,Xi,l_min表示低压塔i组分浓度曲线的最小浓度值,Xi,l_max表示低压塔i组分浓度曲线的最大浓度值,γi,l表示低压塔i组分浓度曲线表征位置处的斜率,N为总塔板数。2)设定值转换模块,根据浓度曲线描述模块所获得的浓度曲线参数,将浓度设定值转换为表征位置设定值,转换公式如下:其中,分别为塔顶的汽相轻组分浓度的设定值和塔底的液相氧组分浓度的设定值,分别为高压塔和低压塔浓度曲线表征位置的设定值,ki,j为第j块塔板i组分的气液平衡系数,可以由Peng-Robinson状态方程计算而来,最终的计算公式如下:其中每层塔板上的气液两相的逸度系数均可以由下式计算:混合物a和b的混合规则为:其中P是压强,T是温度,v是摩尔体积,R是气体常数,取8.3145,xi为混合物中i组分(氧气、氮气或者氩气)的浓度,为i1组分的浓度,为i2组分浓度,ai是i组分的引力参数,是i1和i2两种组分间的引力参数,a是所有组分分子间引力参数的加权和,bi是i组分的范德华体积,b为所有组分范德华体积的加权和,A为由(9)式定义的系数,B为由(10)式定义的系数,Z为压缩因子。3)控制参数实时优化模块,该模块包括以下三部分:3.1)模型建立,根据浓度曲线描述模块和设定值转换模块得到的当前时刻信息,形成内部热耦合空分塔的模型,由以下公式组成:yi,j(t)=ki,jxi,j(t)(14)Qj(t)=UovAΔTj(t)(15)其中,yi,j(t)为t采样时刻第j块塔板的气相i组分浓度,xi,j(t)为t采样时刻第j块塔板的液相i组分浓度,zi,j(t)为t采样时刻第j块塔板进料的i组分浓度,Qj(t)为t采样时刻第j块塔板的传热量,UovA为传热系数,ΔTj(t)为t采样时刻第j组塔板间温差,λ为汽化潜热,Lj(t)为t采样时刻第j块塔板的液相流量,Fj(t)为t采样时刻的进料流量,Vj(t)为t采样时刻第j块塔板的气相流量,Uj(t)为t采样时刻第j块塔板的液相采出流量,Gj(t)为t采样时刻第j块塔板的气相采出流量,qj(t)为t采样时刻的进料热状况;压强P的作用包含在气液平衡系数ki,j中,推导关系如2)中所述,Si,h、Si,l分别为内部热耦合空分塔高压塔和低压塔浓度曲线的表征位置,qF(t+1)、Ph(t+1)分别为第t+1采样时刻的进料热状况和高压塔压强,同时也是控制装置下一时刻的控制参数。3.2)优化问题标准化,为了标准化处理,将部分表达式记为如下形式:其中Si(t)为第t采样时刻系统状态向量,为第t采样时刻系统状态向量的导数,h(t)为约束方程,u(t)表示要优化的控制参数,qF(t)、Ph(t)分别为第t采样时刻的进料热状况和高压塔压强,为系统设定值,分别为高压塔和低压塔浓度曲线表征位置的设定值,φ(t)为表征控制误差与能耗的函数。这样对于控制参数的实时优化就可以转化为以下动态优化问题:其中,J表示目标函数,同时保证控制效果与节能效果,Tp表示预测时域,Tc表示控制时域,并且Tc≤Tp。3.3)优化问题实时求解,首先将控制时域Tc分成m个等分时间段,控制变量u在每个等分的时间段内均为恒定值。梯度信息可以用如下方法得到:构造汉密尔顿函数H(t):H(t)=φ(t)+vTh(t)(24)其中v为拉格朗日乘子,可得:,进而得到梯度公式g(u)的表达式:给定初始的控制变量u0(t)、初始步长α0、迭代截止条件ε以及初始迭代计数k=0,通过以下步骤完成对控制参数的实时优化:3.3.1)计算3.3.2)如果k=0,跳到第3步;否则,将uk代入目标函数J,如果|Jk-Jk+1|≤ε,停止迭代并输出uk,如果|Jk-Jk+1|>ε,则计算其中sk-1=uk-uk-1,yk-1=gk-gk-1;3.3.3)计算uk+1=本文档来自技高网
...
针对产品浓度曲线优化算法的内部热耦合空分塔控制装置

【技术保护点】
一种针对产品浓度曲线优化算法的内部热耦合空分塔控制装置,包括与内部热耦合空分塔直接连接的智能仪表、控制器和DCS系统。所述DCS系统包括上位机、控制站、存储装置、现场总线和数据接口,存储装置、控制站及上位机通过现场总线与数据接口相连接。所述智能仪表通过温度检测元件、压力检测元件、流量检测元件测量相关参数,并与数据接口连接。所述上位机用以实现控制参数的实时优化,包括浓度曲线描述模块、设定值转换模块、控制参数实时优化模块,并将优化后的控制参数通过现场总线传递给控制站。所述控制站根据得到的控制参数通过与现场总线相连的数据接口,对控制器进行调整。所述控制器实现对内部热耦合空分塔的直接控制调整。所述上位机包括:1)浓度曲线静态描述模块,通过智能仪表中的温度检测元件采集温度信息以及压力检测元件采集压强数据,采集到的数据通过数据接口进行电信号转换,并通过现场总线将检测信号输送到所述模块,用以推断出各塔板浓度分布曲线的静态描述函数如下:

【技术特征摘要】
1.一种针对产品浓度曲线优化算法的内部热耦合空分塔控制装置,包括与内部热耦合空分塔直接连接的智能仪表、控制器和DCS系统。所述DCS系统包括上位机、控制站、存储装置、现场总线和数据接口,存储装置、控制站及上位机通过现场总线与数据接口相连接。所述智能仪表通过温度检测元件、压力检测元件、流量检测元件测量相关参数,并与数据接口连接。所述上位机用以实现控制参数的实时优化,包括浓度曲线描述模块、设定值转换模块、控制参数实时优化模块,并将优化后的控制参数通过现场总线传递给控制站。所述控制站根据得到的控制参数通过与现场总线相连的数据接口,对控制器进行调整。所述控制器实现对内部热耦合空分塔的直接控制调整。所述上位机包括:1)浓度曲线静态描述模块,通过智能仪表中的温度检测元件采集温度信息以及压力检测元件采集压强数据,采集到的数据通过数据接口进行电信号转换,并通过现场总线将检测信号输送到所述模块,用以推断出各塔板浓度分布曲线的静态描述函数如下:其中,为t采样时刻第j块塔板的液相i组分(氧气、氮气或者氩气)预测浓度,Si,h(t)、Si,l(t)分别为t采样时刻内部热耦合空分塔高压塔、低压塔浓度曲线的表征位置,Xi,h_min表示高压塔i组分浓度曲线的最小浓度值,Xi,h_max表示高压塔i组分浓度曲线的最大浓度值,γi,h表示高压塔i组分浓度曲线表征位置处的斜率,Xi,l_min表示低压塔i组分浓度曲线的最小浓度值,Xi,l_max表示低压塔i组分浓度曲线的最大浓度值,γi,l表示低压塔i组分浓度曲线表征位置处的斜率,N为总塔板数。2)设定值转换模块,根据浓度曲线描述模块所获得的浓度曲线参数,将浓度设定值转换为表征位置设定值,转换公式如下:其中,分别为塔顶的汽相轻组分浓度的设定值和塔底的液相氧组分浓度的设定值,分别为高压塔和低压塔浓度曲线表征位置的设定值,ki,j为第j块塔板i组分的气液平衡系数,可以由Peng-Robinson状态方程计算而来,最终的计算公式如下:其中每层塔板上的气液两相的逸度系数均可以由下式计算:混合物a和b的混合规则为:其中P是压强,T是温度,v是摩尔体积,R是气体常数,取8.3145,xi为混合物中i组分(氧气、氮气或者氩气)的浓度,为i1组分的浓度,为i2组分浓度,ai是i组分的引力参数,是i1和i2两种组分间的引力参数,a是所有组分分子间引力参数的加权和,bi是i组分的范德华体积,b为所有组分范德华体积的加权和,A为由(9)式定义的系数,B为由(10)式定义的系数,Z为压缩因子。控制参数实时优化模块,该模块包括以下三部分:3.1)模型建立,根据浓度曲线描述模块和设定值转换模块得到的当前时刻信息,形成内部热耦合空分塔的模型,由以下公式组成:

【专利技术属性】
技术研发人员:刘兴高王之宇
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1