当前位置: 首页 > 专利查询>福州大学专利>正文

一种锂辉石管道反应提锂工艺制造技术

技术编号:17512136 阅读:83 留言:0更新日期:2018-03-20 22:55
本发明专利技术公开了一种锂辉石管道反应提锂工艺,将β‑锂辉石粉、硫酸钠(或者含有硫酸钠的循环母液)和添加剂配成浆料进行预热后或者直接通过泵输送至管道反应器中,在管道反应器中进行充分混合反应。反应完成后的浆料降温后进行固液分离,所得滤液经过除杂、浓缩精制、沉锂和过滤得到碳酸锂产品,沉锂母液可作为循环母液返回反应,锂辉石中锂的浸取率可达95%左右。本发明专利技术通过浆料在高温高压的管道流动过程中进行反应,反应过程中没有机械搅拌装置,设备简单、投资少,充分利用价值低廉的硫酸钠,与锂辉石提锂过程形成闭路循环系统,实现了生产过程的良性循环,具有流程简单、处理量大、成本低、能耗小等优点,实现了矿石提锂过程的清洁生产。

A lithium-ion extraction process for reactivity of spodumene pipeline

The invention discloses a process of extraction of lithium spodumene pipeline reaction, beta spodumene powder, sodium sulfate (or recycled liquor containing sodium sulfate) and additive is added into slurry after preheating or directly through the pump to the pipeline reactor, sufficient mixing reaction in pipeline reactor. After the reaction is completed, the slurry is cooled down and solid liquid separation is carried out. The filtrate is obtained after impurity removal, concentration and purification, lithium precipitation and filtration, and the lithium carbonate mother liquor can be returned as a circulating mother liquor. The leaching rate of lithium in Spodumene is about 95%. The reaction through the slurry pipe in high temperature and high pressure flow, no mechanical stirring device in the reaction process, simple equipment, less investment, low cost and make full use of sodium sulfate, and spodumene lithium extraction process to form closed circulation system, to achieve a virtuous cycle of the production process, has the advantages of simple process, high volume low cost, small energy consumption, clean production to achieve the process of lithium ore.

【技术实现步骤摘要】
一种锂辉石管道反应提锂工艺
本专利技术属于矿石浸取领域,具体涉及一种锂辉石管道反应器提锂工艺。
技术介绍
锂及锂化合物在高新技术行业得到广泛应用,主要运用产业包括电子工业、储能电池、核工业及合金工业,近几年锂盐需求量急剧上升,势必造成锂盐的供需不平衡。盐湖锂资源的区域局限性使得含锂矿石受到广泛的关注,锂矿石提锂技术的发展提上了新的日程。工业上矿石提锂方法目前主要通过硫酸焙烧然后通过水浸生产锂盐,该方法在焙烧过程中需要大量的热能和产生大量的烟气,且生产流程长操作复杂,提取液成分复杂增加了除杂成本,锂损失较大,环境问题突出。为了解决硫酸焙烧法存在的问题,则需要加快开发高效低成本的提锂技术来满足工业生产的需求。
技术实现思路
本专利技术的目的在于针对目前矿石提锂的缺陷,提供一种锂辉石管道反应器提锂工艺,该工艺采用管道反应,用泵将锂辉石、硫酸钠和添加剂配成的浆料输送至管道反应器中混合反应,锂的浸取率可达95%左右,实现了连续化生产,解决了低值副产品硫酸钠的回收设备投资以及销售问题,使工艺步骤简化,大幅度的降低能耗和设备投资成本,且符合清洁生产的要求。为实现上述目的,本专利技术采用如下技术方案:一种锂辉石管道反应器提锂工艺,具体包括以下步骤:(1)将天然锂辉石经焙烧后转型为β-锂辉石后,再破碎得到β-锂辉石粉,将β-锂辉石粉、硫酸钠(或者含有硫酸钠的循环母液)以及添加剂与水搅拌调配成浆料;(2)将步骤(1)配好的浆料输送至预热器中经二次蒸汽进行常压预热,完成预热直接用泵输送至管道反应器中,通过管道壁传热或者直接通入高压蒸汽加热,在一定反应温度和压力下反应一定时间,反应完成后输送到多级冷却器换热降温,或者减压降温,并回收热量,回收的二次蒸汽可前往预热器或者加热管道反应器(作为管道反应器的加热热源),浆料降温至30-100℃进行固液分离,获得含硫酸锂的浸出液以及浸取渣;(3)步骤(2)得到的含硫酸锂的浸出液经除杂浓缩后,加入沉淀剂碳酸钠在沉锂槽中反应,过滤获得碳酸锂沉淀以及主要成分为硫酸钠的循环母液,该循环母液返回到步骤(1)中配料。步骤(1)中,所述β-锂辉石中的氧化锂含量≥0.5%,破碎所得β-锂辉石粉粒径D90≤75μm,焙烧温度为900-1100℃。步骤(1)中,β-锂辉石粉:硫酸钠和添加剂的重量比范围为1:(0.2~2.6):(0.01~3),浆料的固液重量比=1:(2~10);循环母液中硫酸钠的浓度为10-250g/L,按照物料配比所需的硫酸钠的质量以及循环母液中硫酸钠浓度计算补充循环母液的量。所述步骤(1)调浆过程的添加剂为CaO、Ca(OH)2、NaOH、KOH、NaHCO3、Na2CO3、KHCO3和K2CO3中的一种或几种。所述步骤(2)中,浆料预热温度为70-100℃,浆料在管道反应器中输送速度为0.1-8.0m/s,浆料在管道中处于湍流状态,浆料加热可通过直接通入高压蒸汽或者通过管道壁传热加热形式获得,反应过程中的工艺参数控制为:反应温度为120~260℃,反应时间0.5~6小时(浆料在管道中的停留时间),压力控制在0.3~4MPa,浆料在管道中通过流动进行混合,反应过程中没有机械搅拌装置。本专利技术的有益效果在于:(1)本专利技术所提供的工艺路线工艺流程短,反应器构造简单无搅拌装置,生产能耗低,处理量大;(2)工艺流程中减少了大量的酸和碱消耗,钠和锂进行置换反应获得硫酸锂,生成的反应渣易于高价值综合利用;(3)本专利技术充分利用循环母液减少了大量副产品的生产,成本低,浸取率高。附图说明图1为本专利技术锂辉石管道反应器提锂工艺的流程图,1-混合槽、2-预热器、3-管道反应器、4-多级冷却器、5-浸取液固液分离设备、6-沉锂槽、7-锂盐固液分离设备。具体实施方式以下结合具体实施例对本专利技术做进一步说明,但本专利技术不仅仅限于这些实施例。实施例1:将转化为β-锂辉石经破碎得到的粒径D90=62.630μm的锂辉石粉,与硫酸钠、氧化钙按照质量配比为1:0.3:0.02进行调浆,提锂过程中固液质量比=1:4,利用二次蒸汽预热浆料至70℃后用泵输送至管道反应器中混合反应,浆料的流动速度为0.8m/s,浆料在反应器内通过二次蒸汽加热以及高温蒸汽夹套加热,浆料反应温度最高控制在210℃,反应压力保持在1.8MPa,持续反应4h。反应结束后输送至多级冷却器换热降温,温度降到30℃后进行固液分离,得到主要含硫酸锂浸取液和主要为方沸石的滤渣,锂辉石中锂的浸取率达到了93%。分离得到的含硫酸锂浸取液浓缩精制后加入除杂剂除去浸出液中少量的杂质,除杂母液加入Na2CO3沉锂,最后经过滤分离获得Li2CO3产品以及沉锂母液,沉锂母液中主要含有硫酸钠,该沉锂母液作为循环母液返回调浆过程重新进入管道反应器中继续反应。实施例2:将转化为β-锂辉石经破碎得到的粒径D90=39.233μm的锂辉石粉,与硫酸钠、Ca(OH)2按照质量配比为1:1.6:1.5进行调浆,提锂过程中固液质量比=1:2,利用二次蒸汽预热浆料至80℃后用泵输送至管道反应器中混合反应,浆料的流动速度为1.5m/s,浆料在反应器内通过二次蒸汽加热以及高温蒸汽夹套加热,浆料反应温度最高温度控制在210℃,反应压力保持在2.0MPa,持续反应1h。反应结束后输送至多级冷却器换热降温,温度降到50℃后进行固液分离,得到主要含硫酸锂浸取液和主要为方沸石的滤渣,锂辉石中锂的浸取率达到了96%。分离得到的含硫酸锂浸取液浓缩精制后加入除杂剂除去浸出液中少量的杂质,除杂母液加入Na2CO3沉锂,最后经过滤分离获得Li2CO3产品以及沉锂母液,沉锂母液中主要含有硫酸钠,该沉锂母液作为循环母液返回调浆过程重新进入管道反应器中继续反应。实施例3:将转化为β-锂辉石经气流破碎得到的粒径D90=69.233μm的锂辉石粉,与硫酸钠、NaOH按照质量配比为1:1.3:2进行调浆,提锂过程中固液质量比=1:8,直接用泵输送至管道反应器中混合反应,浆料的流动速度为1m/s,浆料在反应器内通过二次蒸汽加热以及高温蒸汽夹套加热,浆料反应温度最高温度控制在230℃,反应压力保持在0.8MPa,持续反应2h,反应结束后输送至多级冷却器换热降温,温度降到40℃后进行固液分离,得到主要含硫酸锂浸取液和主要为方沸石的滤渣,锂辉石中锂的浸取率达到了97%。分离得到的含硫酸锂浸取液浓缩精制后加入除杂剂除去浸出液中少量的杂质,除杂母液加入Na2CO3沉锂,最后经过滤分离获得Li2CO3产品以及沉锂母液,沉锂母液中主要含有硫酸钠,该沉锂母液作为循环母液返回调浆过程重新进入管道反应器中继续反应。实施例4:将转化为β-锂辉石经气流破碎得到的粒径D90=62.630μm的锂辉石粉,与硫酸钠、KOH按照质量配比为1:0.45:3进行调浆,提锂过程中固液质量比=1:7,预热至90℃后用泵输送至管道反应器中混合反应,浆料的流动速度为6m/s,浆料在反应器内通过二次蒸汽加热以及高温蒸汽夹套加热,浆料反应温度最高温度控制在190℃,反应压力保持在1.6MPa,持续反应3h。反应结束后输送至多级冷却器换热降温,温度降到60℃后进行固液分离,得到主要含硫酸锂浸取液和主要为方沸石的滤渣,锂辉石中锂的浸取率达到了95%。分离得到的含硫酸锂浸取液浓缩精制后加入除本文档来自技高网...
一种锂辉石管道反应提锂工艺

【技术保护点】
一种锂辉石管道反应提锂工艺,其特征在于:包括以下步骤:(1)将天然锂辉石经焙烧转型为β‑锂辉石后,再破碎得到β‑锂辉石粉,将β‑锂辉石粉、硫酸钠或者含有硫酸钠的循环母液以及添加剂与水搅拌调配成浆料;(2)将步骤(1)配好的浆料输送至预热器中经二次蒸汽进行常压预热,完成预热后直接用泵输送至管道反应器中;通过管道壁传热或者直接通入蒸汽加热,浆料在传送过程中进行反应,反应完成后输送到多级冷却器换热降温或者减压降温,并回收热量,降温至30‑100℃,回收的二次蒸汽输送到预热器预热浆料或者作为管道反应器的加热热源;降温的物料进行固液分离,获得含硫酸锂的浸出液以及浸取渣;(3)步骤(2)得到的含硫酸锂的浸出液经除杂浓缩后,与沉淀剂碳酸钠在沉锂槽中反应后,过滤获得碳酸锂沉淀以及主要成分为硫酸钠的循环母液,该循环母液返回到步骤(1)中配料。

【技术特征摘要】
1.一种锂辉石管道反应提锂工艺,其特征在于:包括以下步骤:(1)将天然锂辉石经焙烧转型为β-锂辉石后,再破碎得到β-锂辉石粉,将β-锂辉石粉、硫酸钠或者含有硫酸钠的循环母液以及添加剂与水搅拌调配成浆料;(2)将步骤(1)配好的浆料输送至预热器中经二次蒸汽进行常压预热,完成预热后直接用泵输送至管道反应器中;通过管道壁传热或者直接通入蒸汽加热,浆料在传送过程中进行反应,反应完成后输送到多级冷却器换热降温或者减压降温,并回收热量,降温至30-100℃,回收的二次蒸汽输送到预热器预热浆料或者作为管道反应器的加热热源;降温的物料进行固液分离,获得含硫酸锂的浸出液以及浸取渣;(3)步骤(2)得到的含硫酸锂的浸出液经除杂浓缩后,与沉淀剂碳酸钠在沉锂槽中反应后,过滤获得碳酸锂沉淀以及主要成分为硫酸钠的循环母液,该循环母液返回到步骤(1)中配料。2.根据权利要求1所述的一种锂辉石管道反应提锂工艺,其特征在于:步骤(1)中,所述β-锂辉石中的氧化锂含量≥0.5%,破碎...

【专利技术属性】
技术研发人员:旷戈刘瑜汤军军陈玉红邢盛洲李付杰
申请(专利权)人:福州大学
类型:发明
国别省市:福建,35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1