多模式脑肿瘤图像混合分割方法和装置制造方法及图纸

编号:201710270990 阅读:14 评论( 0 )

本发明专利技术涉及医疗器械、医学影像,为提出一种改进的多模式脑肿瘤图像混合分割算法,采用FFCM提取脑肿瘤区域,使用混合水平集算法进行修正肿瘤区域存在的边界问题。从而使FFCM算法和水平集算法能够更加有效地应用到MRI脑肿瘤图像中。本发明专利技术采用的技术方案是,多模式脑肿瘤图像混合分割方法,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。本发明专利技术主要应用于医学影像的获取与处理。

Multi mode brain tumor image mixed segmentation method and device

The present invention relates to medical equipment, medical image, this paper proposes a segmentation algorithm for multimodal brain tumor improved image mixed with FFCM extraction of brain tumor region, using a hybrid level set algorithm are modified tumor boundary problem. Thus the FFCM algorithm and the level set algorithm can be more effectively applied to MRI brain tumor images. The technical scheme of the invention is that the brain tumor image segmentation method for multi mode mixed first input MRI image three models including T1C, T2 and FLAIR, the median filtering of image filtering and initial segmented image preprocessing, using linear fusion; then FFCM clustering of fused image segmentation, automatic extraction the gray value of a large area, the area of mixed tumor under segmentation level set segmentation. The invention is mainly applied to the acquisition and processing of medical images.

微信分享本专利技术
微信扫一扫分享本专利技术到微信朋友圈,让更多的人了解这个技术。

全部详细技术资料下载

1 技术实现步骤摘要

多模式脑肿瘤图像混合分割方法和装置
本专利技术涉及医疗器械,是医学影像领域中的一个重要方面。它在脑肿瘤切割、脑肿瘤分类、脑肿瘤识别等领域具有重要作用。具体讲,涉及改进的多模式脑肿瘤图像混合分割方法和装置。
技术介绍
近年来,脑肿瘤发病率呈上升趋势,约占全身肿瘤的5%,占儿童肿瘤的70%。2015年,仅在美国确诊的新发脑肿瘤病例大约23000例。细胞的不可控和无限生长导致脑肿瘤的发生。若不对脑肿瘤进行早期诊断和治疗,可能会导致永久性脑损伤,甚至死亡。核磁共振成像(MagneticResonanceImaging,MRI)可用于检测身体组织的异常变化,是确定脑肿瘤治疗方案的必要手段,在所有治疗方法中,任何有关肿瘤位置和大小的信息都是非常重要的,但是由于脑肿瘤形状复杂,大小和位置具有随机性,类型差异大等因素,导致目前还没有一种分割算法能够满足临床的需要,实时性也无法达到要求,不同专家手动分割脑肿瘤图像的结果也有很大差异,而且人工成本较高。因此,研究准确的全自动脑肿瘤分割算法是非常重要的。脑肿瘤自动分割技术一直以来都是研究热门方向,脑肿瘤图像的分割方法分为手动分割、半自动分割和全自动分割,具体分割算法中又分为阈值算法、聚类算法和形变模型算法等。阈值算法最早用于图像分割,针对脑肿瘤图像的问题,OTSU算法是一种自动适应阈值算法,能够有效避免固定阈值带来的误差;一种用于多区域图像分割的局部模糊阈值(Fuzzythreshold,FTH)算法针对于脑肿瘤这种复杂的图像也有一定的效果,由于脑肿瘤图像的复杂性和阈值算法对像素空域信息考虑不足,导致阈值类算法分割不能有效的解决脑肿瘤分割问题。模糊聚类是适合脑肿瘤图像分割的一类算法,尤其是模糊C均值(FuzzyC-mean,FCM)算法,具有方法实现简单的优势,但由于医学图像信息复杂,边缘不清晰,因此,种子点选取对聚类结果影响很大,且FCM算法方法难以利用图像的空域信息,本身计算复杂。于是提出快速FCM(FastFCM,FFCM)算法改进计算速度的问题;针对空间信息不足的问题,使用空间FCM(SpatialFCM,SFCM)算法分割图像,有效利用空间信息之间的相关性,但是SFCM算法计算速度无法满足医学图像要求的实时性;水平集算法可以有效的处理各种轮廓问题,将模糊聚类与水平集方法相结合(FuzzyClusteringwithLevelSetMethods,FCLSM)算法有效解决了水平集边缘问题,但是FCLSM算法存在实时性和容易陷入局部最优的问题。水平集算法是属于形变模型算法的一类,基于水平集分割算法也广泛应用于脑肿瘤分割,但是由于脑肿瘤组织灰度不均匀,并且脑肿瘤组织之间经常没有明显的边界,采用这类算法容易出现边缘泄露的问题。距离正则化水平集算法(DistanceRegularizedLevelSetEvolution,DRLSE)是一个有效的算法,该算法中的距离正则化效应消除了对重新初始化的需要,从而避免其引起的局部误差;其他方法还有混合水平集算法。该方法使用对象边界和区域信息来实现鲁棒和准确的分割。边界信息可帮助检测目标对象的精确位置,且区域信息可防止边界泄漏,但是水平集算法无法解决容易陷入局部最优和对初始值强烈依赖的问题。
技术实现思路
为克服现有技术的不足,本专利技术旨在提出一种改进的多模式脑肿瘤图像混合分割算法,采用FFCM提取脑肿瘤区域,使用混合水平集算法进行修正肿瘤区域存在的边界问题。从而使FFCM算法和水平集算法能够更加有效地应用到MRI脑肿瘤图像中。本专利技术采用的技术方案是,多模式脑肿瘤图像混合分割方法,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。FFCM聚类分割具体步骤是,将数据通过模糊C均值理论分为c类,对于一幅M×N图像,设{hi,i=1,2,…,n},n=M×N,hi是图像直方图中的像素强度值构成的集合,其中M和N是图像的长和宽,{vj,j=1,2,…,c}是聚类中心构成的集合,且μj(hi)是hi隶属于j类的隶属函数,||·||代表2范数,b是一个大于1常数,则:迭代式(3)(4)若满足迭代终止条件,t>T或则停止,其中t表示迭代次数,ε是停止条件,T代表最大迭代次数,算法结束后,按最大隶属度对像素进行分类,若μj(hi)>μj(hk),则将hi归为第j类区域,k=1,2,...,c;i≠k。混合水平集分割具体步骤是,嵌入函数φ的零集用于表示活动轮廓C={X|φ(X)=0},轮廓内/外的点具有正/负φ值,所提出的需要最小化的函数定义:式(5)中I是待分割的图像,是与图像梯度相关的边界特征图,是梯度算子,H(φ)为赫维赛德函数,Ω为图像域,α和β是预定义权重以平衡两项,μ是指示目标对象的灰度级的下限的预定义参数;其中,为指向曲线外部的法向量,因此活动轮廓的显性曲线进化偏微分方程为式中和曲率<·,·>为内积;由于只有曲线的几何变化在分割中是感兴趣的,所以从式(6)可以注意到曲线上的所有点都在法线方向上移动,式(6)第一项是描述目标对象内部的曲线部分的扩展运动和外部部分的收缩运动的传播项,第二项是平流项,描述由g的梯度引起的向量场中的曲线移动,以将曲线吸引到目标对象的边界,第三项描述由梯度特征映射g加权的曲率流,作用是平滑边界支持弱的部分的曲线;在水平集中,和描述相同的曲线变化,若φ是有符号距离函数,即水平集嵌入函数随时间变化的导数为g是递减函数,式中c为控制斜率。多模式脑肿瘤图像混合分割装置,设置有计算机,用于处理T1C、T2和FLAIR的MRI图像,计算机包括如下模块:采用中值滤波对图像进行滤波处理和初始分割模块,得到预处理图像;之后预处理图像输入线性融合模块;融合后图像输入FFCM聚类分割模块,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域;再输入进行混合水平集分割模块处理,得到最终结果。本专利技术的特点及有益效果是:本专利技术通过改进的多模式脑肿瘤图像混合分割算法来分割带有脑肿瘤的MRI图像,与一些经典的方法相比较,其优势主要体现在:1)新颖性:首次使用FFCM算法和混合水平集算法来分割带有脑肿瘤的MRI图像,根据MRI脑肿瘤图像的特性,结合FFCM算法和混合水平集的优势,达到对脑肿瘤图像快速分割的目的。2)有效性:使用FFCM可以快速有效的得到欠分割的区域,欠分割区域输入到混合水平集中能够加快收敛边界,从而有效地克服算法的缺陷,同时提高了准确性。3)实用性:现在的分割算法由于都难以达到实用性和实时性的要求,本专利技术结合混合水平集算法和FFCM算法之间的合理部分,从而克服一些算法的缺陷,一定程度上增加量算法的实用性。并且为自动分割脑肿瘤技术做了进一步的探讨。附图说明:图1是本专利技术改进的多模式脑肿瘤图像混合分割算法分割MRI脑肿瘤的流程图。图2是本专利技术算法在10个脑肿瘤图像的相似系数(Dice)。具体实施方式1基于直方图的快速FCM理论FFCM的核心思想是像素强度值寻求合适的隶属度和聚类中心,使得聚类内耗费函数的方差和迭代误差最小,耗费函数的值是像素本文档来自技高网
...
多模式脑肿瘤图像混合分割方法和装置
【详细说明在详细技术资料中】

全部详细技术资料下载 我是这个专利的主人

2 技术保护点

一种多模式脑肿瘤图像混合分割方法,其特征是,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。

3 技术保护范围摘要

1.一种多模式脑肿瘤图像混合分割方法,其特征是,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。2.如权利要求1所述的多模式脑肿瘤图像混合分割方法,其特征是,FFCM聚类分割具体步骤是,将数据通过模糊C均值理论分为c类,对于一幅M×N图像,设{hi,i=1,2,…,n},n=M×N,hi是图像直方图中的像素强度值构成的集合,其中M和N是图像的长和宽,{vj,j=1,2,…,c}是聚类中心构成的集合,且μj(hi)是hi隶属于j类的隶属函数,||·||代表2范数,b是一个大于1常数,则:迭代式(3)(4)若满足迭代终止条件,t>T或则停止,其中t表示迭代次数,ε是停止条件,T代表最大迭代次数,算法结束后,按最大隶属度对像素进行分类,若μj(hi)>μj(hk),则将hi归为第j类区域,k=1,2,...,c;i≠k。混合水平集分割具体步骤是,嵌入函数φ的零集用于表示活动轮廓C={X|φ(X)=0},轮廓内/外的点具有正/负φ值,所提出的需要最小化的函数定义:

4 专利技术属性

发明(设计)人:童云飞李锵关欣
申请(专利权)人:天津大学
专利类型:发明
专利号:201710270990
国别省市:天津,12

5 专利技术项目评估

还没有人评估本专利项目,你来评估一下?

对专利感兴趣?请拨打022-23869559(工作日)13820821600(24小时)咨询

6 相关技术资料

高斯混合模型图像分割专利,图像采集装置专利,图像处理装置专利,图像分割专利,图像分割算法专利,opencv图像分割专利,opencv图像分割算法

网友询问留言: 已有 0 条评论

还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1