当前位置: 首页 > 专利查询>浙江大学专利>正文

一种多声道超声波气体流量计声道权系数计算方法技术

技术编号:15721746 阅读:375 留言:0更新日期:2017-06-29 03:01
本发明专利技术公开了一种多声道超声波气体流量计声道权系数计算方法。在流量计标定过程中,获取超声波气体流量计各个声道的顺、逆流渡越时间,通过温度和压力测量装置读取流量计工作温度和压力,结合标准表测量结果,使用粒子群算法优化参数的支持向量机算法,得出多声道超声波气体流量计声道权系数。支持向量机算法的使用能够有效降低流量计系统误差。使用粒子群算法优化支持向量机算法的参数,能够有效降低人为设定参数带来的支持向量机算法计算结果的偏差。该方法可以统一应用于低速区和非低速区的测量,不必按照雷诺数大小划分流速区来分别进行流速校正和拟合。该方法可适应不同声道布置方式和位置,有效降低计量误差,实用性更强。

Method for calculating channel weight coefficient of multi-channel ultrasonic gas flowmeter

The invention discloses a method for calculating the channel weight coefficient of a multi-channel ultrasonic gas flowmeter. In the flowmeter calibration process, obtain the ultrasonic gas flow meter of individual channels, current transit time, the temperature and pressure measuring device to read the meter working temperature and pressure, combined with the standard table of the measurement results, the use of particle swarm algorithm to optimize the parameters of support vector machine algorithm, the multi-path ultrasonic gas flowmeter channel coefficient. The use of support vector machine algorithm can effectively reduce the flow meter system errors. Using particle swarm optimization algorithm to optimize the parameters of SVM algorithm can effectively reduce the deviation of the support vector machine algorithm caused by the artificial set parameters. This method can be used in both low velocity and non low velocity regions, and the velocity correction and fitting are not required according to the Reynolds number. The method can be adapted to different channel layout modes and positions, effectively reduce measurement errors, and is more practical.

【技术实现步骤摘要】
一种多声道超声波气体流量计声道权系数计算方法
本专利技术涉及一种多声道超声波气体流量计声道权系数计算方法,特别涉及一种基于粒子群算法优化参数的支持向量机算法的多声道超声波气体流量计声道权系数计算方法。
技术介绍
超声波气体流量仪表是近年来广泛应用于天然气管道的流量测量装置。其具有的双向性、无阻流元件、重复性高、精度高和不带来管道压损等优点,使多声道超声波气体流量计取代传统的孔板流量计和涡轮流量计等,成为流量测量的主要装置。超声波气体流量计使用的原理是超声波在流体的影响下,顺、逆流传播时声波速度与流速叠加或者相抵,导致顺逆流传播时间不一致,并与流体流速相关,从而可通过对顺、逆流时间的测量反推流体流速。多声道超声波气体流量计是在单声道超声波气体仪表的基础上加入多个声道,声道所在的平面是平行于管道纵向的过直径横截面或者过弦横截面。通过测量管道不同位置的流体速度分布,按照相应的声道权系数方案进行计算后,得出流体流速。常用的多声道超声波气体流量计权系数方案有Gauss-Legendre方案、Tchebychev方案,Tailored方案和OWICS方案。与单声道超声波气体流量计相比,多声道超声波流量计的优点在于多声道的布局可以抵消一部分由于安装误差和电路时延等带来的系统误差,对于速度分布的多位置测量能够更加准确地反应流动的真实状况,利于精确测量和流态监测。在国际上,多声道超声波气体流量计是天然气贸易结算的标准器具。目前制造商主要为欧洲和美国的大型仪表制造企业,中国国内具有自主知识产权的精密超声波气体流量计制造公司几乎没有,仪表使用来源依赖进口,价格高、维修不便。多声道超声波气体流量计的研制是一个包含了软件和硬件的设计、结合和优化的过程。工作主要集中在在硬件方面,超声波换能器的制造、性能提高、优化电路以提高信号信噪比等,在软件方面,对于超声波在流体中传播方式进行深入探讨以改进流量计的测量原理、流量计校准方法的优化等。在多声道超声波气体流量计声道系数方案的研究上,Gauss-Legendre方案、Tchebychev方案,Tailored方案和OWICS方案。这些方案都建立在特定的声道位置布局基础之上,缺点在于在仪表实际制造过程中,无法保证声道位置完全按照设计位置排布,从而带来系统误差,同时由于这些设计方案都基于充分发展的管道流体速度分布半经验模型,并不完全适合实际测量中气体流体的流动状态。从而导致多声道超声波气体流量计的测量准确度降低。与本专利相关的文献和专利中,Yeh,T等人发表在2001年IEEEInstrumentation&MeasurementTechnology会议的论文“Anintelligenceultrasonicflowmeterforimprovedflowmeasurementandflowcalibrationfacility”中,提出了使用人工神经网络来计算多声道流量计的声道权系数,但并没有通过实验数据来证明这种方法的有效性。专利《一种采用高斯-雅可比多项式确定声道位置的设置新方法》(申请公布号:201610117702.7)使用高斯-雅可比多项式来确定声道的位置,要求声道位置必须依照计算方案固定安装,在实际仪表制造中难以保证,灵活性差。
技术实现思路
本专利技术目的在于克服上述现有研究和技术存在的问题和缺陷,提出一种多声道超声波气体流量计声道权系数计算方法。本专利技术的目的通过以下的技术方案实现:一种多声道超声波气体流量计声道权系数计算方法,包括以下步骤:1)将多声道超声波气体流量计安装在流量测试管道中,测试段上游需存在至少20倍管道直径长度的直管段或者相应整流设施,以保证超声波气体流量计测试管道内流体流动充分发展,测试管道包含的测量装置包括标准流量计、温度测量装置、压力测量装置;2)根据超声波流量计测量范围和雷诺数计算公式,将超声波气体流量计测量范围划分为低速区和非低速区,最低流速到雷诺数4000对应的流速范围为低速区,雷诺数4000对应的流速至最高流速范围为非低流速区;3)在低速区选取均匀分布的若干流速点,进行流量计量测试;4)在非低流速区选取均匀分布的若干流速点,进行流量计量测试;5)将流量计量测试中测得的数据作为支持向量机的输入;6)选取支持向量机的惩罚因子C和核函数参数σ,给定惩罚因子C和核函数参数σ的上下限作为搜索域,随机生成若干组C和σ的初始值,将这若干组初始值记为(C,σ),作为每个粒子在搜索域内的位置,将其作为支持向量机算法的初始参数设置,同时随机设定每个粒子的速度初始值;7)使用支持向量机进行多维流量曲线拟合,得出流量v和温度T、压力p、各声道顺流渡越时间tdown、逆流渡越时间tup的关系式v=f(tup,tdown,T,p);8)将关系式v=f(tup,tdown,T,p)的系数矩阵W作为该流量计声道权系数,并带入输入的各流速及其对应的温度T、压力p、各声道顺流渡越时间tdown、逆流渡越时间tup数据,计算对应流速,将计算出的流速值与真实流速数据进行比对,并计算均方误差,作为当前粒子的适应度;9)计算当前每个粒子的适应度,即采用了当前的惩罚因子C和核函数参数σ设定方案的支持向量机算法得出的流速计算值和真实值之间的均方误差值,并求出每个粒子的个体最优适应度和所有粒子的全局最优适应度;10)根据粒子群算法中设定的粒子速度和位置进化规则,对每个粒子的位置和速度进行进化;11)判断是否达到粒子群算法设定的最大代数,若达到设定最大代数,停止进行参数优化,选取粒子群算法的全局最优适应度,作为支持向量机的参数,否则返回步骤7);12)在流速范围内随机取一系列流速点进行流量计量测试,并用关系式v=f(tup,tdown,T,p)计算出流量值作为该流量计的测量流量值;13)将测量流量值与标准流量计的计量值进行比对,计算相对误差、量程误差和精度等级,并重复步骤12),检验流量计测量的可重复性;14)判断量程误差和精度等级等指标是否达到技术指标要求,输出关系式v=f(tup,tdown,T,p)及其系数矩阵W,分别作为该台多声道超声波气体流量计的仪表特性曲线和声道权系数,否则返回步骤5)。进一步地,该方法与传统声道布局权系数相比,优点在于不要求各个声道位置布局按照某种方案固定排布,权系数由流量仪表的流量测量数据作为输入。进一步地,适应度通过均方误差来体现,其计算公式为:其中:MSE是均方误差,N是输入支持向量机的测量数据组数,Vi是第i组测量数据的流量测量值,VM_i是第i组测量数据由支持向量机得出的流速测量模型(v=f(tup,tdown,T,p))计算出的流速计算值。与现有技术相比,本专利技术具有以下优点:1、算法先进。支持向量机算法的使用解决了多声道超声波气体流量计测量原理中流量和顺、逆流渡越时间非线性关系和流量计生产制造中无法避免的硬件误差和电路时延不易测量等问题,能够有效降低流量计系统误差。2、精确度高。该方法使用粒子群优化算法来选择支持向量机的参数,这样的参数选择方式能够有效避免人为给支持向量机算法选择参数带来的支持向量机计算模型不精确,导致流量计测量误差大的结果,同时更易实现仪表的智能化和自动化。3、实用性强。该方法可以统一应用于低速区和非低速区的测量,不必按照雷本文档来自技高网
...
一种多声道超声波气体流量计声道权系数计算方法

【技术保护点】
一种多声道超声波气体流量计声道权系数计算方法,其特征在于,包括以下步骤:1)将多声道超声波气体流量计安装在流量测试管道中,测试段上游需存在至少20倍管道直径长度的直管段或者相应整流设施,以保证超声波气体流量计测试管道内流体流动充分发展,测试管道包含的测量装置包括标准流量计、温度测量装置、压力测量装置;2)根据超声波流量计测量范围和雷诺数计算公式,将超声波气体流量计测量范围划分为低速区和非低速区,最低流速到雷诺数4000对应的流速范围为低速区,雷诺数4000对应的流速至最高流速范围为非低流速区;3)在低速区选取均匀分布的若干流速点,进行流量计量测试;4)在非低流速区选取均匀分布的若干流速点,进行流量计量测试;5)将流量计量测试中测得的数据作为支持向量机的输入;6)选取支持向量机的惩罚因子C和核函数参数σ,给定惩罚因子C和核函数参数σ的上下限作为搜索域,随机生成若干组C和σ的初始值,将这若干组初始值记为(C,σ),作为每个粒子在搜索域内的位置,将其作为支持向量机算法的初始参数设置,同时随机设定每个粒子的速度初始值;7)使用支持向量机进行多维流量曲线拟合,得出流量v和温度T、压力p、各声道顺流渡越时间t...

【技术特征摘要】
1.一种多声道超声波气体流量计声道权系数计算方法,其特征在于,包括以下步骤:1)将多声道超声波气体流量计安装在流量测试管道中,测试段上游需存在至少20倍管道直径长度的直管段或者相应整流设施,以保证超声波气体流量计测试管道内流体流动充分发展,测试管道包含的测量装置包括标准流量计、温度测量装置、压力测量装置;2)根据超声波流量计测量范围和雷诺数计算公式,将超声波气体流量计测量范围划分为低速区和非低速区,最低流速到雷诺数4000对应的流速范围为低速区,雷诺数4000对应的流速至最高流速范围为非低流速区;3)在低速区选取均匀分布的若干流速点,进行流量计量测试;4)在非低流速区选取均匀分布的若干流速点,进行流量计量测试;5)将流量计量测试中测得的数据作为支持向量机的输入;6)选取支持向量机的惩罚因子C和核函数参数σ,给定惩罚因子C和核函数参数σ的上下限作为搜索域,随机生成若干组C和σ的初始值,将这若干组初始值记为(C,σ),作为每个粒子在搜索域内的位置,将其作为支持向量机算法的初始参数设置,同时随机设定每个粒子的速度初始值;7)使用支持向量机进行多维流量曲线拟合,得出流量v和温度T、压力p、各声道顺流渡越时间tdown、逆流渡越时间tup的关系式v=f(tup,tdown,T,p);8)将关系式v=f(tup,tdown,T,p)的系数矩阵W作为该流量计声道权系数,并带入输入的各流速及其对应的温度T、压力p、各声道顺流渡越时间tdown、逆流渡越时间...

【专利技术属性】
技术研发人员:唐晓宇杨秦敏孙优贤
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1